c^2 = a^2 + b^2 - 2*ab*Cos(C)
c = 16; a = 17; b = 8 (what you call a and b don't really matter. c does). Substitute.
16^2 = 17^2 + 8^2 - 2*17*8*Cos(C) Add the first 2 on the right.
256 = 289 + 64 - 282*cos(C)
256 = 353 - 282*cos(C)
Whatever you do, don't do any more combing on the right side. Subtract 353 from both sides.
-97 = -282 * cos(C )
Divide by 282
0.34397 = cos(C)
cos-1(0.34397) = C ; C = 69.88 degrees.
Do you need more help on this question? All of these are done the same way.
Answer:
The standard form is 
Step-by-step explanation:
Given:

To Find :
standard form of 
Solution:
A polynomial is in standard form when its term of highest degree is first, its term of 2nd highest is 2nd etc.
In order to write any polynomial in standard form, you look at the degree of each term. You then write each term in order of degree, from highest to lowest, left to write.
Now lets check the degree of each term in the polynomial
The degree of 6x is 5
The degree of 8x is 1
The degree of 3x is 3
The degree of 7x is 7
Now rewrite the polynomial in the order of the degree, from highest to lowest

Answer:
(1). y = x ~ Exp (1/3).
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
Step-by-step explanation:
Kindly check the attachment to aid in understanding the solution to the question.
So, from the question, we given the following parameters or information or data;
(A). The probability in which attempt to establish a video call via some social media app may fail with = 0.1.
(B). " If connection is established and if no connection failure occurs thereafter, then the duration of a typical video call in minutes is an exponential random variable X with E[X] = 3. "
(C). "due to an unfortunate bug in the app all calls are disconnected after 6 minutes. Let random variable Y denote the overall call duration (i.e., Y = 0 in case of failure to connect, Y = 6 when a call gets disconnected due to the bug, and Y = X otherwise.)."
(1). Hence, for FY(y) = y = x ~ Exp (1/3) for the condition that zero is equal to y = x < 6.
(2). Check attachment.
(3). EY = 3(1 - e^-2).
(4). Var[y] = 3(1 - e^-2) (1 -3 (1 - e^-2)) - 36e^-2.
The condition to follow in order to solve this question is that y = 0 if x ≤ 0, y = x if 0 ≤ x ≤ 6 and y = 6 if x ≥ 6.
Answer:
Step-by-step explanation:
2n+15>3