Answer:
Question 1. (2.2, -1.4)
Question 2. (1.33, 1)
Step-by-step explanation:
Equations for the given lines are
-----(1)
It is given that this line passes through two points (0, 2.5) and (2.2, 1.4).
------(2)
This equation passes through (0, -3) and (2.2, -1.4).
Now we have to find a common point through which these lines pass or solution of these equations.
From equations (1) and (2),
x =
x = 2.2
From equation (2),
y = -1.4
Therefore, solution of these equations is (2.2, -1.4).
Question 2.
The given equations are y = 1.5x - 1 and y = 1
From these equations,
1 = 1.5x - 1
1.5x = 2
x =
Therefore, the solution of the system of linear equations is (1.33, 1).
Answer:
The correct option is (A) $304.47.
Step-by-step explanation:
The formula to compute the future value (<em>FV</em>) of an amount (A), compounded daily at an interest rate of <em>r</em>%, for a period of <em>n</em> years is:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
The information provided is:
A = $300
r% = 1.48%
n = 1 year
Compute the future value as follows:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
![=300\times [1+\frac{0.0148}{365}]^{365}\\\\=300\times (1.00004055)^{365}\\\\=300\times 1.014911\\\\=304.4733\\\\\approx \$304.47](https://tex.z-dn.net/?f=%3D300%5Ctimes%20%5B1%2B%5Cfrac%7B0.0148%7D%7B365%7D%5D%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%20%281.00004055%29%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%201.014911%5C%5C%5C%5C%3D304.4733%5C%5C%5C%5C%5Capprox%20%5C%24304.47)
Thus, the balance after 1 year is $304.47.
The correct option is (A).
Answer:
a) ![[-0.134,0.034]](https://tex.z-dn.net/?f=%5B-0.134%2C0.034%5D)
b) We are uncertain
c) It will change significantly
Step-by-step explanation:
a) Since the variances are unknown, we use the t-test with 95% confidence interval, that is the significance level = 1-0.05 = 0.025.
Since we assume that the variances are equal, we use the pooled variance given as
,
where
.
The mean difference
.
The confidence interval is

![= -0.05\pm 1.995 \times 0.042 = -0.05 \pm 0.084 = [-0.134,0.034]](https://tex.z-dn.net/?f=%3D%20-0.05%5Cpm%201.995%20%5Ctimes%200.042%20%3D%20-0.05%20%5Cpm%200.084%20%3D%20%5B-0.134%2C0.034%5D)
b) With 95% confidence, we can say that it is possible that the gaskets from shift 2 are, on average, wider than the gaskets from shift 1, because the mean difference extends to the negative interval or that the gaskets from shift 1 are wider, because the confidence interval extends to the positive interval.
c) Increasing the sample sizes results in a smaller margin of error, which gives us a narrower confidence interval, thus giving us a good idea of what the true mean difference is.
The terms in a geometric sequence are given by: A = ar^(n-1)
where A is the nth term in the sequence.
a = first term in the sequence (-2)
r = common ratio (-5)
n = number of the term (4)
A = (-2)(-5)^(4-1)
A = (-2)(-5)^(3)
A = (-2)(-125)
A = 250
Sorry
==========================
================