Answer:
C) Bacteria congregated in these areas because these areas had the most oxygen being released.
Explanation:
Below is the full question:
Theodor W. Engelmann illuminated a filament of algae with light that passed through a prism, thus exposing different segments of algae to different wavelengths of light. He added aerobic bacteria and then noted in which areas the bacteria congregated. He noted that the largest groups were found in the areas illuminated by the red and blue light.
What did Engelmann conclude about the congregation of bacteria in the red and blue areas?
A) Bacteria released excess carbon dioxide in these areas.
B) Bacteria congregated in these areas due to an increase in the temperature of the red and blue light.
C) Bacteria congregated in these areas because these areas had the most oxygen being released.
D) Bacteria are attracted to red and blue light and thus these wavelengths are more reactive than other wavelengths.
E) Bacteria congregated in these areas due to an increase in the temperature caused by an increase in photosynthesis.
The most efficient region of white light for photosynthesis has been found to be the blue and red region of the white light. Hence, these two regions must have had the most oxygen being released because they are the regions with the highest rates of photosynthesis.
<em>Aerobic bacteria thrived better in the regions illuminated by red and blue light because these regions had the highest oxygen production as a result of having the highest rates of photosynthesis.</em>
<em>The correct option is C.</em>
Growth Hormone and insulin are protein hormones that promotes the growth and regulation of substrate metabolism.
Explanation:
The Growth Hormone performs the metabolic actions in various tissues like liver, muscle, and pancreas through insulin growth factor. Insulin slows down the growth hormone signalling through the growth hormone receptor. It is important for maintaining the responsiveness of liver to growth hormone.
The insulin signalling pathway is very important in metabolic diseases like diabetes and aging. These insulin activates a phosphorylation cascade that branches to form a network affecting multiple biological processes.
Answer:
I would expect that the sample has only 50% of the original 235 U.
Explanation:
That is because 235 U has a half-life of 700 million years and I expect that my sample be 350 million years old. 350 is half of 700.
It would be 2. it emits all wavelengths in the electromagnetic spectrum
Um probably 4 because I got a little hungry