In this virtual lab you have examined different muscles that allow frogs to efficiently move in their aquatic environment. More
specifically, frogs’ legs and arms contain extensor and flexor muscles. In a brief essay discuss how frogs utilize these muscles in order to swim, jump, and do other frog things efficiently. In your response, include specific names of these muscles located in the upper and lower limbs of the frog.
<span>The structure of the feet and legs varies greatly among frog species, depending in part on whether they live primarily on the ground, in water, in trees or in burrows. Frogs must be able to move quickly through their environment to catch prey and escape predators, and numerous adaptations help them to do so. Most frogs are either proficient at jumping or are descended from ancestors that were, with much of the musculoskeletal morphology modified for this purpose. The tibia, fibula, and tarsals have been fused into a single, strong bone, as have the radius and ulna in the fore limbs (which must absorb the impact on landing). The metatarsals have become elongated to add to the leg length and allow the frog to push against the ground for a longer period on take-off. The illium has elongated and formed a mobile joint with the sacrum which, in specialist jumpers such as ranids and hylids, functions as an additional limb joint to further power the leaps. The tail vertebrae have fused into a urostyle which is retracted inside the pelvis. This enables the force to be transferred from the legs to the body during a leap </span> <span>The muscular system has been similarly modified. The hind limbs of ancestral frogs presumably contained pairs of muscles which would act in opposition (one muscle to flex the knee, a different muscle to extend it), as is seen in most other limbed animals. However, in modern frogs, almost all muscles have been modified to contribute to the action of jumping, with only a few small muscles remaining to bring the limb back to the starting position and maintain posture. The muscles have also been greatly enlarged, with the main leg muscles accounting for over 17% of the total mass of the frog </span> <span>Many frogs have webbed feet and the degree of webbing is directly proportional to the amount of time the species spends in the water.[40] The completely aquatic African dwarf frog (Hymenochirus sp.) has fully webbed toes, whereas those of White's tree frog (Litoria caerulea), an arboreal species, are only a quarter or half webbed </span> <span>Arboreal frogs have pads located on the ends of their toes to help grip vertical surfaces. These are not suction pads, the surface consisting instead of columnar cells with flat tops with small gaps between them lubricated by mucous glands. When the frog applies pressure, the cells adhere to irregularities on the surface and the grip is maintained through surface tension. This allows the frog to climb on smooth surfaces, but the system does not function efficiently when the pads are excessively wet </span> <span>In many arboreal frogs, a small "intercalary structure" on each toe increases the surface area touching the substrate. Furthermore, since hopping through trees can be dangerous, many arboreal frogs have hip joints to allow both hopping and walking. Some frogs that live high in trees even possess an elaborate degree of webbing between their toes. This allows the frogs to "parachute" or make a controlled glide from one position in the canopy to another. </span> <span>Ground-dwelling frogs generally lack the adaptations of aquatic and arboreal frogs. Most have smaller toe pads, if any, and little webbing. Some burrowing frogs such as Couch's spadefoot (Scaphiopus couchii) have a flap-like toe extension on the hind feet, a keratinised tubercle often referred to as a spade, that helps them to burrow </span> <span>Sometimes during the tadpole stage, one of the developing rear legs is eaten by a predator such as a dragonfly nymph. In some cases, the full leg still grows, but in others it does not, although the frog may still live out its normal lifespan with only three limbs. Occasionally, a parasitic flatworm (Ribeiroia ondatrae) digs into the rear of a tadpole, causing a rearrangement of the limb bud cells and the frog develops an extra leg or two.
<span>If the energy in glucose was released at once, most of the energy would be lost as light and heat. The light and heat could harm or even destroy the cell. The gradual process of cellular respiration allows the cell to control the release of energy into packages of ATP that can be used efficiently for cell activities.</span>
<span>Solar power is a renewable resource because </span><span>it is continually replenished.</span><span> </span><span>Final answer: A</span><span></span>
An endospore is a structure that remains in the dormant state in some bacteria. The term endospore refers to the seed like form, but actually it is not a true spore. Endospore allows bacteria to restrain it's biological activities like obtaining food and reproduction under harsh environmental conditions like freezing and drying. Under favorable conditions these endospores reactivates. The endospore consist of bacterial DNA and ribosome.