Answer:
stages of the nitrogen cycle
1. Nitrogen-fixation
Legume plants such as peas, beans and clover contain nitrogen-fixing bacteria. These bacteria live in swellings in the plant roots called nodules. Nitrogen-fixing bacteria convert nitrogen gas from air into a form that plants can use to make proteins.
Free-living nitrogen-fixing bacteria are also found in the soil. When they die the nitrogen they have fixed into their biomass is converted into ammonium.
2. Feeding
Animals consume plant protein, digest it using specific enzymes and absorb the free amino acids.
3. Production of nitrogenous waste products
Animals cannot store excess protein in their bodies. They break it down and turn it into waste products and excrete them from their bodies.
4. Decomposition
Decomposers (some free-living bacteria and fungi) break down animal and plant proteins (from dead organisms) and nitrogenous waste products to release energy. As a result of decomposition nitrogen is released into the soil in the form of ammonium.
5. Nitrification
A group of free-living soil bacteria called nitrifying bacteria convert ammonium into nitrates in order to obtain energy.
6. Uptake of nitrates
Non-legume plants absorb nitrates from the soil into their roots and use the nitrates to produce their proteins.
7. Denitrification
This is when bacteria in the soil convert the nitrate back into nitrogen gas which then gets released back into the atmosphere.
Answer:
E. All of the above
Explanation:
In cardiac contractile cells there is rapid depolarization, then a plateau phase and repolarization.
when an action potential stimulates the cell, voltage-gated channels open quickly commencing the positive-feedback mechanism of depolarization. This in turn raises the membrane potential to approximately +30 mV, and this closes the sodium channels. Next comes the plateau phase, where membrane potential declines relatively slowly due to the opening of the slow Ca2+ channels, allowing Ca2+ to enter the cell while few K+ channels are open, leading to K+ to exit. Once the membrane potential reaches approximately zero, the Ca2+ channels close and K+ channels open, allowing the exit of K+. The repolarization lasts approximately for a while and here is when the membrane potential drops until it reaches resting levels once more and repeats the cycle.
Answer:
Body tube (Head): The body tube connects the eyepiece to the objective lenses. Arm: The arm connects the body tube to the base of the microscope. Coarse adjustment: Brings the specimen into general focus. Fine adjustment: Fine tunes the focus and increases the detail of the specimen
Explanation:
I would choose to make sure the local people value the forest especially the kipunji monkeys. How I would do that is by convicing them that leaving the forest is more profitable than cutting it down for agriculture use by suggesting that tourists will pay to visit their land. Tourism would boost the economy and value of the land. The local people can make a big profit and save their forest too.
Answer:
The answer is B.
Explanation:
The variable is dependent meaning it stands on its own. the sentence "I skipped dinner" is a stand alone sentence meaning its the answer