answer.
Ask question
Login Signup
Ask question
Why is a solution of 4% acetic acid in 95% ethanol used to wash the crude aldol-dehydration product?
raketka [301]

A cold acetic acid solution is used to wash the residue of the reagent in preparation of an aldol condensation product after vacuum filtration.  The main reason in washing with the acetic acid rinse is to neutralize any sodium hydroxide.

5 0
2 years ago
The following table lists the work functions of a few common metals, measured in electron volts. Metal Φ(eV) Cesium 1.9 Potassiu
Citrus2011 [14]

A. Lithium

The equation for the photoelectric effect is:

E=\phi + K

where

E=\frac{hc}{\lambda} is the energy of the incident light, with h being the Planck constant, c being the speed of light, and \lambda being the wavelength

\phi is the work function of the metal (the minimum energy needed to extract one photoelectron from the surface of the metal)

K is the maximum kinetic energy of the photoelectron

In this problem, we have

\lambda=190 nm=1.9\cdot 10^{-7}m, so the energy of the incident light is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{1.9\cdot 10^{-7} m}=1.05\cdot 10^{-18}J

Converting in electronvolts,

E=\frac{1.05\cdot 10^{-18}J}{1.6\cdot 10^{-19} J/eV}=6.5 eV

Since the electrons are emitted from the surface with a maximum kinetic energy of

K = 4.0 eV

The work function of this metal is

\phi = E-K=6.5 eV-4.0 eV=2.5 eV

So, the metal is Lithium.

B. cesium, potassium, sodium

The wavelength of green light is

\lambda=510 nm=5.1\cdot 10^{-7} m

So its energy is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5.1\cdot 10^{-7} m}=3.9\cdot 10^{-19}J

Converting in electronvolts,

E=\frac{3.9\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.4 eV

So, all the metals that have work function smaller than this value will be able to emit photoelectrons, so:

Cesium

Potassium

Sodium

C. 4.9 eV

In this case, we have

- Copper work function: \phi = 4.5 eV

- Maximum kinetic energy of the emitted electrons: K = 2.7 eV

So, the energy of the incident light is

E=\phi+K=4.5 eV+2.7 eV=7.2 eV

Then the copper is replaced with sodium, which has work function of

\phi = 2.3 eV

So, if the same light shine on sodium, then the maximum kinetic energy of the emitted electrons will be

K=E-\phi = 7.2 eV-2.3 eV=4.9 eV

7 0
2 years ago
Two large insulating parallel plates carry charge of equal magnitude, one positive and the other negative, that is distributed u
noname [10]

Answer:

The correct answer is C 1, 4, and 5 tie, then 2 and 3 tie

Explanation:

Solution

The electric field due to sheets E₁ positive =б/2E₀

E₂ is negative = б/2E₀

Now,

At the point 1, 4, 5 the electric field due to the sheets are in the opposite direction

At the point 1, the net field = -E₁ + E₂ =0

At the point A, the net field = -E₁ - E₂ = 0

Now,

At nay point inside between them, the electric field is seen to be at the same direction.

At the 2, 3 points the field is seen at the right

Thus,

E net = E₁ + E₂

= б/2E₀ + σ/2E₀

=б/E₀

Note: Kindly find an attached copy of the complete question to the solution

7 0
2 years ago
Although human beings have been able to fly hundreds of thousands of miles into outer space, getting inside the earth has proven
faltersainse [42]

Answer:

26 km

Explanation:

Let's say our "cable" has a cross section of 1 m²

Then each meter of cable would weight 7900(9.8) = 77420 N

A Pascal is a Newton per square meter

2 x 10⁹ / 77420 = 25840 m or about 26 km or about 16 miles

4 0
2 years ago
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!