In geometry, it is always advantageous to draw a diagram from the given information in order to visualize the problem in the context of the given.
A figure has been drawn to define the vertices and intersections.
The given lengths are also noted.
From the properties of a kite, the diagonals intersect at right angles, resulting in four right triangles.
Since we know two of the sides of each of the right triangles, we can calculate their heights which in turn are the segments which make up the other diagonal.
From triangle A F G, we use Pythagoras theorem to find
h1=A F=sqrt(20*20-12*12)=sqrt(256)=16
From triangle DFG, we use Pythagoras theorem to find
h2=DF=sqrt(13*13-12*12)=sqrt(25) = 5
So the length of the other diagonal equals 16+5=21 cm
1/2 because 5/9 is equivalent to 10/18. Half of 18 is 9 and 10 is close to 9 so the nearest benchmark fraction you should round to is 1/2. Hope this helps you!
First we need to calculate annual withdrawal of each investment
The formula of the present value of an annuity ordinary is
Pv=pmt [(1-(1+r)^(-n))÷(r)]
Pv present value 28000
PMT annual withdrawal. ?
R interest rate
N time in years
Solve the formula for PMT
PMT=pv÷[(1-(1+r)^(-n))÷(r)]
Now solve for the first investment
PMT=28,000÷((1−(1+0.058)^(−4))
÷(0.058))=8,043.59
The return of this investment is
8,043.59×4years=32,174.36
Solve for the second investment
PMT=28,000÷((1−(1+0.07083)^(
−3))÷(0.07083))=10,685.63
The return of this investment is
10,685.63×3years=32,056.89
So from the return of the first investment and the second investment as you can see the first offer is the yield the highest return with the amount of 32,174.36
Answer d
Hope it helps!
First, we are going to find the sum of their age. To do that we are going to add the age of Eli, the age Freda, and the age of <span>Geoff:
</span>

The combined age of Eli, Freda, and Geoff is 40, so the denominator of each ratio will be 40.
Next, we are going to multiply the ratio between the age of the person and their combined age by <span>£800:
For Eli: </span>
For Freda:
For Geoff: 
<span>
We can conclude that
Eli will get </span>
£180,
Freda will get £260, and
Geoff will get <span>
£360.</span>