Answer:
a. k = 3
b. Cumulative distribution function X, 
c. Probability when headway exceeds 2 seconds = 0.125
Probability when headway is between 2 and 3 seconds = 0.088
d. Mean value of headway = 1.5
Standard deviation of headway = 0.866
e. Probability that headway is within 1 standard deviation of the mean value = 0.9245
Step-by-step explanation:
From the information provided,
Let X be the time headway between two randomly selected consecutive cars (sec).
The known distribution of time headway is,

a. Value of k.
Since the distribution of X is a valid density function, the total area for density function is unity. That is,

So, the equation becomes,
![\int\limits^{1}_{-\infty} f(x)dx + \int\limits^{\infty}_{1} f(x)dx=1\\0 + \int\limits^{\infty}_{1} {\frac{k}{x^4}}.dx=1\\0 + k \int\limits^{\infty}_{1} {\frac{1}{x^4}}.dx=1\\k[\frac{x^{-3}}{-3}]^{\infty}_1=1\\k[0-(\frac{1}{-3})]=1\\\frac{k}{3}=1\\k=3](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B1%7D_%7B-%5Cinfty%7D%20f%28x%29dx%20%2B%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B1%7D%20f%28x%29dx%3D1%5C%5C0%20%2B%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B1%7D%20%7B%5Cfrac%7Bk%7D%7Bx%5E4%7D%7D.dx%3D1%5C%5C0%20%2B%20k%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B1%7D%20%7B%5Cfrac%7B1%7D%7Bx%5E4%7D%7D.dx%3D1%5C%5Ck%5B%5Cfrac%7Bx%5E%7B-3%7D%7D%7B-3%7D%5D%5E%7B%5Cinfty%7D_1%3D1%5C%5Ck%5B0-%28%5Cfrac%7B1%7D%7B-3%7D%29%5D%3D1%5C%5C%5Cfrac%7Bk%7D%7B3%7D%3D1%5C%5Ck%3D3)
b. For this problem, the cumulative distribution function is defined as :

Now,
![F(x) = 0 + \int\limits^x_1 {\frac{k}{x^4}}.dx\\= 0 + \int\limits^x_1 3x^{-4}.dx\\= 3 \int\limits^x_1 x^{-4}dx\\= 3[\frac{x^{-4+1}}{-4+1}]^3_1\\= 3[\frac{x^{-3}}{-3}]^3_1\\=(\frac{-1}{x^3})|^x_1\\=(-\frac{1}{x^3}-(\frac{-1}{1}))=1- \frac{1}{x^3}=1-x^{-3}](https://tex.z-dn.net/?f=F%28x%29%20%3D%200%20%2B%20%20%5Cint%5Climits%5Ex_1%20%7B%5Cfrac%7Bk%7D%7Bx%5E4%7D%7D.dx%5C%5C%3D%200%20%2B%20%20%5Cint%5Climits%5Ex_1%203x%5E%7B-4%7D.dx%5C%5C%3D%203%20%5Cint%5Climits%5Ex_1%20x%5E%7B-4%7Ddx%5C%5C%3D%203%5B%5Cfrac%7Bx%5E%7B-4%2B1%7D%7D%7B-4%2B1%7D%5D%5E3_1%5C%5C%3D%203%5B%5Cfrac%7Bx%5E%7B-3%7D%7D%7B-3%7D%5D%5E3_1%5C%5C%3D%28%5Cfrac%7B-1%7D%7Bx%5E3%7D%29%7C%5Ex_1%5C%5C%3D%28-%5Cfrac%7B1%7D%7Bx%5E3%7D-%28%5Cfrac%7B-1%7D%7B1%7D%29%29%3D1-%20%5Cfrac%7B1%7D%7Bx%5E3%7D%3D1-x%5E%7B-3%7D)
Therefore the cumulative distribution function X is,

c. Probability when the headway exceeds 2 secs.
Using cdf in part b, the required probability is,
![P(X>2)=1-P(X\leq 2)\\=1-F(2)\\=1-[1-2^{-3}]\\=1-(1- \frac{1}{8})\\=\frac{1}{8} = 0.125](https://tex.z-dn.net/?f=P%28X%3E2%29%3D1-P%28X%5Cleq%202%29%5C%5C%3D1-F%282%29%5C%5C%3D1-%5B1-2%5E%7B-3%7D%5D%5C%5C%3D1-%281-%20%5Cfrac%7B1%7D%7B8%7D%29%5C%5C%3D%5Cfrac%7B1%7D%7B8%7D%20%3D%200.125)
Probability when headway is between 2 seconds and 3 seconds
Using the cdf in part b, the required probability is,

≅ 0.088
d. Mean value of headway,
![E(X)=\int\limits x * f(x)dx\\=\int\limits^{\infty}_1 x(3x^{-4})dx\\=3 \int\limits^{\infty}_1 x(x^{-4})dx\\=3 \int\limits^{\infty}_1 x^{-3}dx\\=3[\frac{x^{-3+1}}{-3+1}]^{\infty}_1\\=3[\frac{x^{-2}}{-2}]^{\infty}_1\\=3[\frac{1}{-2x^2}]^{\infty}_1\\=3[- \frac{1}{2x^2}]^{\infty}_1\\=3[- \frac{1}{2(\infty)^2}- (- \frac{1}{2(1)^2})]\\=3(\frac{1}{2})=1.5](https://tex.z-dn.net/?f=E%28X%29%3D%5Cint%5Climits%20x%20%2A%20f%28x%29dx%5C%5C%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_1%20x%283x%5E%7B-4%7D%29dx%5C%5C%3D3%20%5Cint%5Climits%5E%7B%5Cinfty%7D_1%20x%28x%5E%7B-4%7D%29dx%5C%5C%3D3%20%5Cint%5Climits%5E%7B%5Cinfty%7D_1%20x%5E%7B-3%7Ddx%5C%5C%3D3%5B%5Cfrac%7Bx%5E%7B-3%2B1%7D%7D%7B-3%2B1%7D%5D%5E%7B%5Cinfty%7D_1%5C%5C%3D3%5B%5Cfrac%7Bx%5E%7B-2%7D%7D%7B-2%7D%5D%5E%7B%5Cinfty%7D_1%5C%5C%3D3%5B%5Cfrac%7B1%7D%7B-2x%5E2%7D%5D%5E%7B%5Cinfty%7D_1%5C%5C%3D3%5B-%20%5Cfrac%7B1%7D%7B2x%5E2%7D%5D%5E%7B%5Cinfty%7D_1%5C%5C%3D3%5B-%20%5Cfrac%7B1%7D%7B2%28%5Cinfty%29%5E2%7D-%20%28-%20%5Cfrac%7B1%7D%7B2%281%29%5E2%7D%29%5D%5C%5C%3D3%28%5Cfrac%7B1%7D%7B2%7D%29%3D1.5)
And,
![E(X^2)= \int\limits^{\infty}_1 x^2(3x^{-4})dx\\=3 \int\limits^{\infty}_1 x^{-2} dx\\=3[- \frac{1}{x}]^{\infty}_1\\=3(- \frac{1}{\infty}+1)=3](https://tex.z-dn.net/?f=E%28X%5E2%29%3D%20%5Cint%5Climits%5E%7B%5Cinfty%7D_1%20x%5E2%283x%5E%7B-4%7D%29dx%5C%5C%3D3%20%5Cint%5Climits%5E%7B%5Cinfty%7D_1%20x%5E%7B-2%7D%20dx%5C%5C%3D3%5B-%20%5Cfrac%7B1%7D%7Bx%7D%5D%5E%7B%5Cinfty%7D_1%5C%5C%3D3%28-%20%5Cfrac%7B1%7D%7B%5Cinfty%7D%2B1%29%3D3)
The standard deviation of headway is,
![= \sqrt{V(X)}\\ =\sqrt{E(X^2)-[E(X)]^2} \\=\sqrt{3-(1.5)^2} \\=0.8660254](https://tex.z-dn.net/?f=%3D%20%5Csqrt%7BV%28X%29%7D%5C%5C%20%3D%5Csqrt%7BE%28X%5E2%29-%5BE%28X%29%5D%5E2%7D%20%5C%5C%3D%5Csqrt%7B3-%281.5%29%5E2%7D%20%5C%5C%3D0.8660254)
≅ 0.866
e. Probability that headway is within 1 standard deviation of the mean value

From part b, F(x) = 0, if x ≤ 1
