Answer:
The correct statements are a, b and d. The incorrect statements are c and e.
Explanation:
Substrate level phosphorylation signifies the generation of ATP from ADP and a phosphorylated intermediate. On the other hand, in oxidative phosphorylation, the formation of ATP takes place from ADP and Pi, that is, an inorganic phosphate.
In substrate-level phosphorylation an enzyme is needed for the reaction to take place. In the process, a dissociation of bond takes place between an organic molecule and a phosphate prior to the formation of ATP. In this, one of the substrates is a molecule obtained from the dissociation of glucose.
In substrate-level phosphorylation, the enzyme taking part in the synthesis of ATP is not required to get attached to the membrane to generate ATP. The phosphate group, which is added to ADP to produce ATP does not come from free inorganic phosphate ions.
If I'm correct the earth experiences a neap tide hope that helps:)
When cells reach their size limitations one of two things will happen: they will either stop growing and split into two separate cells. Cell division can be both good and bad.
Answer: if i want to breed a rose and i don't have a certain kind of rose, i have to cross between them until i have a kind of rose that express the phenotype i was looking for. Once i've got it, i'll try to cross it with another rose and generate more species like that to cross with the rose that express the phenotype, this favors to generate a specie that have a pure phenotype.
Explanation: The answer is explain by the Mendel's laws.
Mendel's second law:
if you have two roses that are heterozygous and you cross them, their offspring have a 25% probability of generating a homozygous phenotype for a certain recessive characteristic (such as the rich smell of roses that is not a dominant character), 50% of generate heterozygotes with a dominant phenotype, and 25% generate other homozygotes with a dominant phenotype.
Once the offspring with the recessive homozygous character are obtained, it is possible to start making crosses between those of a recessive nature and there Mendel's first law applies
All the homozygous recessive individuals that are crossed will have a 100% homozygous recessive offspring.
Also, if you cross heterozygotes with another heterozygotes the offspring will be 100% heterozygotes