answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kari74 [83]
2 years ago
10

A sum lent out at simple interest becomes rs4480 in 3 years and rs 4800 in 5years.find the rate of interest​

Mathematics
1 answer:
jek_recluse [69]2 years ago
8 0

Answer: rate = 4%

Step-by-step explanation:

SI = 4800 - 4480 = 320 for two years

For 1 year, it is 320/2 = 160

For 5 years, it is 160 * 5 = 800

Principal = Amount -SI

P = 4800 - 800 = 4000

SI = prt / 100

800 = (4000 * r * 5) / 1000

r = 800 * 100 / 4000 * 5

r = 4%

You might be interested in
Kat has 19 coins, all quarters and dimes, that are worth a total of $4. The system of equations that can be used to find the num
lorasvet [3.4K]
Since q+d=19, we can re-write this as d=19-q. Using the second equation 0.25q+0.1d=4 we can multiply both sides by 100. So we get 25q+10d=400. So now we can plug d=19-q into 25q+10d=400. So now we get, 25q+190-10q=400. Subtracting both sides by 190, we get 15q=210 and that q=14 plugging that in d=5
3 0
2 years ago
A cone is cut out of the center of a pyramid with a rectangular base. The rectangular base has side lengths of 15 and 10 units.
Mekhanik [1.2K]

Answer:

Volume of shaded portion = (600 - 36π) units³

Step-by-step explanation:

Volume of the shaded portion = Volume of pyramid - Volume of cone

Volume of pyramid = ⅓*l*w*h

Where,

l = length of base of pyramid = 15 units

w = width of base of pyramid = 10 units

h = height of pyramid = 12 units

Plug in the values to find the volume of the pyramid

Volume of pyramid = ⅓*15*10*12 = 5*10*12 = 600 units³

Volume of Cone = ⅓πr²h,

Where,

r = radius = ½ of diameter = ½ of 9 = 3 units

h = height = 12 units

Volume of Cone = ⅓*π*3²*12 = ⅓*π*9*12

= π*3*12 = 36π units³

Volume of shaded portion = (600 - 36π) units³

3 0
2 years ago
Rocky Mountain National Park is a popular park for outdoor recreation activities in Colorado. According to U.S. National Park Se
Ugo [173]

Answer:

a) 0.6628 = 66.28% probability that at least 85 visitors had a recorded entry through the Beaver Meadows park entrance

b) 0.5141 = 51.41% probability that at least 80 but less than 90 visitors had a recorded entry through the Beaver Meadows park entrance

c) 0.5596 = 55.96% probability that fewer than 12 visitors had a recorded entry through the Grand Lake park entrance.

d) 0.9978 = 99.78% probability that more than 55 visitors have no recorded point of entry

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

E(X) = np

The standard deviation of the binomial distribution is:

\sqrt{V(X)} = \sqrt{np(1-p)}

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that \mu = E(X), \sigma = \sqrt{V(X)}.

In this problem, we have that:

n = 175

(a) What is the probability that at least 85 visitors had a recorded entry through the Beaver Meadows park entrance?

46.7% of visitors to Rocky Mountain National Park in 2018 entered through the Beaver Meadows. This means that p = 0.467. So

\mu = E(X) = np = 175*0.467 = 81.725

\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{175*0.467*0.533} = 6.6

This probability, using continuity correction, is P(X \geq 85 - 0.5) = P(X \geq 84.5), which is 1 subtracted by the pvalue of Z when X = 84.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{84.5 - 81.725}{6.6}

Z = 0.42

Z = 0.42 has a pvalue of 0.6628.

66.28% probability that at least 85 visitors had a recorded entry through the Beaver Meadows park entrance.

(b) What is the probability that at least 80 but less than 90 visitors had a recorded entry through the Beaver Meadows park entrance?

Using continuity correction, this is P(80 - 0.5 \leq X <  90 - 0.5) = P(79.5 \leq X \leq 89.5), which is the pvalue of Z when X = 89.5 subtracted by the pvalue of Z when X = 79.5. So

X = 89.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{89.5 - 81.725}{6.6}

Z = 1.18

Z = 1.18 has a pvalue of 0.8810.

X = 79.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{79.5 - 81.725}{6.6}

Z = -0.34

Z = -0.34 has a pvalue of 0.3669.

0.8810 - 0.3669 = 0.5141

51.41% probability that at least 80 but less than 90 visitors had a recorded entry through the Beaver Meadows park entrance

(c) What is the probability that fewer than 12 visitors had a recorded entry through the Grand Lake park entrance?

6.3% of visitors entered through the Grand Lake park entrance, which means that p = 0.063

\mu = E(X) = np = 175*0.063 = 11.025

\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{175*0.063*0.937} = 3.2141

This probability, using continuity correction, is P(X < 12 - 0.5) = P(X < 11.5), which is the pvalue of Z when X = 11.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{11.5 - 11.025}{3.2141}

Z = 0.15

Z = 0.15 has a pvalue of 0.5596.

55.96% probability that fewer than 12 visitors had a recorded entry through the Grand Lake park entrance.

(d) What is the probability that more than 55 visitors have no recorded point of entry?

22.7% of visitors had no recorded point of entry to the park. This means that p = 0.227

\mu = E(X) = np = 175*0.227 = 39.725

\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{175*0.227*0.773} = 5.54

Using continuity correction, this probability is P(X \leq 55 + 0.5) = P(X \leq 55.5), which is the pvalue of Z when X = 55.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{55.5 - 39.725}{5.54}

Z = 2.85

Z = 2.85 has a pvalue of 0.9978

0.9978 = 99.78% probability that more than 55 visitors have no recorded point of entry

8 0
2 years ago
A rectangular plot of land measures 120 feet by 96 feet. Which dimensions could not represent the plot on a scale drawing?
Tresset [83]
The answer is b. if you divide 120 and 96, you would get 20 inches.
6 0
2 years ago
Read 2 more answers
A Roper survey reported that 65 out of 500 women ages 18-29 said that they had the most say when purchasing a computer; a sample
8090 [49]

Answer:

Step-by-step explanation:

<u><em>Step(i):-</em></u>

<em>Given first random sample size n₁ = 500</em>

Given  Roper survey reported that 65 out of 500 women ages 18-29 said that they had the most say when purchasing a computer.

<em>First sample proportion </em>

<em>                              </em>p^{-} _{1} = \frac{65}{500} = 0.13

<em>Given second sample size n₂ = 700</em>

<em>Given a sample of 700 men (unrelated to the women) ages 18-29 found that 133 men said that they had the most say when purchasing a computer.</em>

<em>second sample proportion </em>

<em>                              </em>p^{-} _{2} = \frac{133}{700} = 0.19

<em>Level of significance = α = 0.05</em>

<em>critical value = 1.96</em>

<u><em>Step(ii)</em></u><em>:-</em>

<em>Null hypothesis : H₀: There  is no significance difference between these proportions</em>

<em>Alternative Hypothesis :H₁: There  is significance difference between these proportions</em>

<em>Test statistic </em>

<em></em>Z = \frac{p_{1} ^{-}-p^{-} _{2}  }{\sqrt{PQ(\frac{1}{n_{1} } +\frac{1}{n_{2} } )} }<em></em>

<em>where </em>

<em>         </em>P = \frac{n_{1} p^{-} _{1}+n_{2} p^{-} _{2}  }{n_{1}+ n_{2}  } = \frac{500 X 0.13+700 X0.19  }{500 + 700 } = 0.165<em></em>

<em>        Q = 1 - P = 1 - 0.165 = 0.835</em>

<em></em>Z = \frac{0.13-0.19  }{\sqrt{0.165 X0.835(\frac{1}{500 } +\frac{1}{700 } )} }<em></em>

<em>Z =  -2.76</em>

<em>|Z| = |-2.76| = 2.76 > 1.96 at 0.05 level of significance</em>

<em>Null hypothesis is rejected at 0.05 level of significance</em>

<em>Alternative hypothesis is accepted at 0.05 level of significance</em>

<u><em>Conclusion:</em></u><em>-</em>

<em>There is there is a difference between these proportions at α = 0.05</em>

3 0
2 years ago
Other questions:
  • David bought 30 shares of Amazon at the close price of $121.00. In a few years, David sells all of his shares at $143.50. How mu
    5·1 answer
  • An electrician earns $110 after his first hour of working for a client. His total pay based on the number of hours worked can be
    8·1 answer
  • Riley started selling bracelets. During the first month she sold 400 bracelets at $10 each. She tried raising the price, but for
    15·1 answer
  • Classify the following triangle as acute obtuse or right 132 36 12
    12·1 answer
  • Isla flipped a coin 30 times. The coin landed heads up 9 times and tails up 21 times.
    11·1 answer
  • What is the correct solution set for the following graph?
    15·2 answers
  • After simplifying, which expressions are equivalent? Select three options.
    15·2 answers
  • Find the measure of APBˆ. A. 130 B. 63 C. 50 D. 230
    10·1 answer
  • Complete the table of inputs and outputs for the given function g(x)=3-8x.
    13·1 answer
  • Here is a picture that shows one side of a child's wooden block with a semicircle cut out at the bottom. What is the area of the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!