27. Replace b with 7, making 6 + 3(7). The 3 and parentheses of 7 hint multiplication, so you multiply to make 21, then add 6 relating back to PEMDAS to teach you the correct order to solve the problem.
<u><em>Answer:</em></u>
A. (3x²-4x-5)(2x⁶-5)
<u><em>Explanation:</em></u>
<u>The fundamental theorem of Algebra states that:</u>
"A polynomial of degree 'n' will have exactly 'n' number of roots"
We know that the degree of the polynomial is given by the highest power of the polynomial.
Applying the above theorem on the given question, we can deduce that the polynomial that has exactly 8 roots is the polynomial of the 8th degree
<u>Now, let's check the choices:</u>
<u>A. (3x²-4x-5)(2x⁶-5)</u>
The term with the highest power will be (3x²)(2x⁶) = 6x⁸
Therefore, the polynomial is of 8th degree which means it has exactly 8 roots. This option is correct.
<u>B. (3x⁴+2x)⁴</u>
The term with the highest power will be (3x⁴)⁴ = 81x¹⁶
Therefore, the polynomial is of 16th degree which means it has exactly 16 roots. This option is incorrect.
<u>C. (4x²-7)³</u>
The term with the highest power will be (4x²)³ = 64x⁶
Therefore, the polynomial is of 6th degree which means that it has exactly 6 roots. This option is incorrect
<u>D. (6x⁸-4x⁵-1)(3x²-4)</u>
The term with the highest power will be (6x⁸)(3x²) = 18x¹⁰
Therefore, the polynomial is of 10th degree which means that it has exactly 10 roots. This option is incorrect
Hope this helps :)
He would want to charge $0.85 per glass of lemonade to cover his expenses and have $10.00 profit. But in reality he would'nt make $17.00 because people don't carry freaking nickels and dimes.
A dodecagon has 12 sides. That means that the smallest angle of rotational symmetry is 360/12 or 30°. All of its angles of rotational symmetry will be multiples of 30, including 180°. 135°, since it is not a multiple of 30°, is not a rotational angle for this figure. The order of °rotational symmetry is 12, as there are 12 sides you can turn this figure to (since it is regular).
Answer:
A
Step-by-step explanation:
(2m-n) is a factor of 4(2m-n)