X + (7 - 3i) + (5 + 9i) + 13i = 10 - 5i
Subtract 13i from both sides
x + (7 -3i) + (5 + 9i) = 10 - 18i
Subtract (5 + 9i). MAKE SURE YOU SUBTRACT 9i TOO. In other words, distribute the negative and subtract 5 and 9i at the same time.
x + (7 - 3i) = 5 - 27i
Do the same with (7 - 3i). You'll be adding 3i since -(-3i) = 3i.
x = -2 - 24i
Answer:
Subtraction property ; x = 3.25
Division property ; - 6
multiplication property ; - 125
Addition property ; 13
Step-by-step explanation:
A.)
x + 3.75 = 7
Using the subtraction property : subtract 3.75 from both sides
x + 3.75 - 3.75 = 7 - 3.75
x = 3.25
B. )
–3b = 18
According to the division property :
Divide both sides by - 3
-3b / - 3 = 18 / - 3
b = - 6
C.)
m/5 = - 25
Using the multiplication property :
m/5 * 5 = - 25 * 5
m = - 125
D.)
m – 4 = 9
Using the addition property :
Add 4 to both sides :
m - 4 + 4 = 9 + 4
m = 13
Answer:
1/6
Step-by-step explanation:
two events need to happen: tutti frutti needs to be shown by first spinner and second spinner needs to show dish
probability of tutti frutti = 1/3
probability of dish = 1/2
probability of both events = 1/3 * 1 /2 = 1/6
The Mean = (135 + 71 + 69 + 80 + 158 + 152 + 161 + 96 + 122 + 118 + 87 + 85 ) : 12 = 111.166
The smallest value : 69
The greatest value : 161
s² = ∑( x i - x )² / ( n - 1 )
s² = ( 568.274 + 1613.3 + 1777.97 + 971.32 + 2193.42 + 1667.4 + +2483.42 + 230 + 117.38 + 46.7 + 584 + 684.66 ) : 11
s² = 1176.1676
s = √s² = √1176.1676
s ( Standard deviation ) = 34.295
All the values fall within 2 standard deviations:
x (Mean) - 2 s and x + 2 s
Here we are given the specific equation of:
amount of eroded soil = 0.4 + 1.3 x
where x is the flow rate
A linear equation has a general formula in the form of:
y = m x + b
where m is the slope and b is the y intercept of the equation
If we compare this with our specific equation, we can see that the slope and y intercept are both positive with values:
m = 0.4
b = 1.3
Therefore this only means that as the flow rate increases, the amount of eroded soil also increases.
Hence the correlation must be positive but we cannot solve for the exact value since we need the data for x and y.
Answer:
positive, but we cannot say what the exact value is