Answer:
(x+2)
Step-by-step explanation:
factor out the equation and get
(x+2)(6x-5)
Answer:
0.01364
Step-by-step explanation:
It is given that,
A store sells a 33-pound bag of oranges for $3.60 and a 55-pound bag of oranges for $5.25.
Price per pound of 33 pound bag is 3.60/33 = 0.10909 price per pound
Price per pound of 55 pound bag of oranges is 5.25/55 = 0.09545 price per pound
Difference between price per pound for the 33-pound bag of oranges and the price per pound for the 55-pound bag of oranges is :
D = 0.10909 - 0.09545
D = 0.01364
Therefore, this is the required solution.
Answer:
the seventh grader because the eighth graders got 58 which is more than 50 so the 7th grader would get the pts
Step-by-step explanation:
Answer:
The solution is (2,6)
Step-by-step explanation:
Let
x-----> the number of hours to change a fuel injection unit
y-----> the number of hours to change a transmission
we know that
5x+10y=70 -----> equation A
8x+8y=64 -----> equation B
Solve the system of equations by graphing
Remember that the solution of the system of equations is the intersection point both graphs
The solution is the point (2,6)
see the attached figure
Answer:
26.11% of women in the United States will wear a size 6 or smaller
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

In the United States, a woman's shoe size of 6 fits feet that are 22.4 centimeters long. What percentage of women in the United States will wear a size 6 or smaller?
This is the pvalue of Z when X = 22.4. So



has a pvalue of 0.2611
26.11% of women in the United States will wear a size 6 or smaller