Answer:
procedure always produces 6
Step-by-step explanation:
Let 'n' be the unknown number
Add 4 to the number : n+4
multiply the sum by 3.
multiply the sum n+4 by 3

Now subtract 6, so we subtract 6 from 3n+12

finally decrease the difference by the tripe of the original number
triple of original number is 3n

so the procedure always produces 6
Answer:

Step-by-step explanation:
Consider the given matrix
![A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D)
Let matrix B is
![B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
It is given that

![\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
On comparing corresponding elements of both matrices, we get



Therefore, the required values are
.
Answer:
A reflection followed by a translation
Step-by-step explanation:
A reflection across they x-axis would put all the points in the right section and on the right y value. The x value would need to be changed though. So, you would need to do a translation of 4 on all points.
M=slope
In this case the slope would be $25
y=mx+b
y=25x+45
Answer: m=25
Answer:
To determine the number of real number solutions of as system of equations in which one equation is linear and the other is quadratic
1) Given that there are two variables, x and y as an example, we make y the subject of the equation of the linear equation and substitute the the expression for y in x into the quadratic equation
We simplify and check the number of real roots with the quadratic formula,
for quadratic equations the form 0 = a·x² - b·x + c
Where b² > 4·a·c there are two possible solutions and when b² = 4·a·c equation there is only one solution.
Step-by-step explanation: