A = a^2.....where " a " is the length of one side
A = 79
79 = a^2...take sqrt of both sides, eliminating the ^2
sqrt 79 = a
8.89 = a
so the length of one side is approximately 8.89 ft <==
Answer:
24 terms
Step-by-step explanation:
The sum of an arithmetic sequence is the average of the first and last terms, multiplied by the number of terms. The last term is given by ...
an = a1 + (n-1)d
We have a sequence with first term a1 = 2 and common difference d = 2. So the last term is ...
an = 2+ 2(n -1) = 2n
Then the average of first and last terms times the number of terms is ...
Sn = 600 = n(2 + 2n)/2 = n(n+1) . . . . . . close to n²
We can solve the quadratic in n, or we can estimate the value of n as the integer just below the square root of 600.
√600 ≈ 24.5
so we believe n = 24.
_____
<em>Check</em>
S24 = 24·25 = 600 . . . . . . as required.
Width = x
Length = x+18
Assuming the table is rectangular:
Area = x(x + 18)
Therefore:
x(x + 18) <span>≤ 175
x^2 + 18x </span><span>≤ 175
Using completing the square method:
x^2 + 18x + 81 </span><span>≤ 175 + 81
(x + 9)^2 </span><span>≤ 256
|x + 9| </span><span>≤ sqrt(256)
|x + 9| </span><span>≤ +-16
-16 </span>≤ x + 9 <span>≤ 16
</span>-16 - 9 ≤ x <span>≤ 16 - 9
</span>-25 ≤ x <span>≤ 7
</span><span>
But x > 0 (there are no negative measurements):
</span><span>
Therefore, the interval 0 < x </span><span>≤ 7 represents the possible widths.</span><span>
</span>
Answer:
What is the longest side?
square root of 1700
What is the square of the longest side?
1700
What is the sum of the squares of the two shorter sides?
1700
Does the window frame form right triangles?
Yes, the sum of the square of the two shorter sides equals the square of the longest side.
Answer: If I remember correctly, the answer should be <em>y=-2(3)^x. </em>