answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
1 year ago
5

A box can hold a maximum of 8 cans. You have 50 cans to put in boxes. What is the smallest number of boxes you need to store all

of the cans in boxes?
Mathematics
1 answer:
xeze [42]1 year ago
3 0

Answer:

7boxes

Step-by-step explanation:

A box can hold a maximum of 8 cans

You have a total of 50 cans

The problem here is to determine the minimum number of boxes that can hold the 50 cans

Let the minimum number of boxes = y

The minimum required will be such that:

The Product of The number of cans X Number of Required boxes ≥50

8y≥50

y≥50/8

y≥6.25

Since a box have a fractional value, the minimum number of boxes required to store 50 cans will be the nearest whole number which in this case is 7.

You might be interested in
Company F sells fabrics known as fat quarters, which are rectangles of fabric created by cutting a yard of fabric into four piec
jeka94

Answer:

a) Y 0 1 2

P(Y) 0.58 0.23 0.11

b) mean= 0.45, S.D= 0.6718

c) mean= 1.285, S.D= 8.74

Step-by-step explanation:

a) The following table shows the probability distribution of X:

X 0 1 2 3 4 or more

P(X) 0.58 0.23 0.11 0.05 0.03

Defect >2 = cannot be sold

Y = the number of defects on a fat quarter that can be sold by Company F.

Y = defect that can be sold

Y = Defect less or equal to 2 = 0,1,2

Probability distribution of the random variable Y:

Y 0 1 2

P(Y) 0.58 0.23 0.11

b) mean of Y (μ)

μ = Σ x*P(Y)

= (0*0.58) +(1*0.23)+(2*0.11)

= 0+0.23+0.22 = 0.45

Standard deviation of Y = σ

σ = Σ√(x-mean)^2*P(Y)

= Σ√[(x- μ )^2*P(Y)]

= √[(0-0.45)^2*0.58+ (1-0.45)^2*0.23 + (2-0.45)^2*0.11]

= √[0.11745 + 0.069575 +0.264275

= √(0.4513

σ = 0.6718

Company G:

σ for defect that be sold = 0.66

μ for defect that be sold = 0.40

Difference between μ of F and μ of G

= 0.45-0.40 = 0.05

Difference between σ of F and σ of G

= 0.67-0.66 = 0.01

Selling price of fat quarter without defect = $5

Discount per defect = $1.5

Selling price per defect = 5-1.5 = $3.5

Discount per 2 defect = $1.5*2 = $3

Selling price per defect = 5-3 = $2

Since defect to be sold cannot be greater than 2, let Y = 5,3,2

Probability distribution of the selling price Y:

Y 5 3 2

P(Y) 0.58 0.23 0.11

μ = (5*0.58) +(3.5*0.23)+(2*0.11)

μ = 2.9+0.805+0.22 =1.285

σ = Σ√[(x- μ )^2*P(Y)]

σ = √[(5-1.285)^2*0.58+ (3-1.285)^2*0.23 + (2-1.285)^2*0.11]

σ = 8.00+0.68+0.06 = 8.74

7 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
Samantha walked 10 miles in 5 hours. What was her walking rate in miles per hour?
Vitek1552 [10]

Answer:

2 miles per hour

Step-by-step explanation:

5 hours = 10 miles

Your gonna have to divide 10 by 5 to get the answer

10 ÷ 5 = 2

3 0
2 years ago
A boy climbs to the top of a tree and sees his friend 100 feet from the base of the tree. If the tree is 25 feet tall, what is t
QveST [7]
It would be helpful to draw the figure for this system. We would see that a right triangle is made where the base is equal to 100 ft and the height is equal to 25 ft. Using trigonometric functions we can easily calculate for the angle as follows:

tan (theta) = 25 / 100
theta = 14.04 degrees
7 0
2 years ago
Jamal is comparing his transportation options for an upcoming trip. He’s considering a rental car and a taxi service. Based on h
Blizzard [7]

Answer:

Graph A

Step-by-step explanation:

Say that the car rental rate stands for c dollars ( $ ). We know that Jamal's trip lasts for 4 days, paying $ 24 in expenses for gas, and $ 128 for taxi services. Based on these requirements for his trip the question asks for a graph that models this situation, but lets start with the inequality.

______

The big key here is the part " which graph shows the range of car rental rates that would be cheaper than the taxi service. " Our inequality must thus have the variable " c " on the same side as the payment for gas ($ 24 ), and must be less than the taxi service ( $ 128 ), or in other words a less than sign. Another point is the car rental rate. We know it stands for c, but it is dependent on the number of days. Hence we can conclude the following inequality,

24 + 4c < 128 - Subtract 24 from either side,

4c < 104 - Divide by 4 on either side, isolating c,

c < 26

The range of car rental rates that would be cheaper than the taxi service should be { c | 0 ≤ c < 26 }, knowing variable c stands for the car rental rates.

______

The graph that models this range should be the first one, option A. This graph is not accurate however, as it extends infinitely in the negative direction, and you can't have negative money, or rather be in debt - in this situation.

6 0
2 years ago
Other questions:
  • Salmon often jump waterfalls to reach their breeding grounds. One salmon starts 2.00m from a waterfall that is 0.55m tall and ju
    8·2 answers
  • Jenny is taking a vacation to Florida. She travels 70 kilometers per hour for 2 hours, and 63 kilometers per hour for 5 hours. O
    10·1 answer
  • Mary is making some shirts for her school's drama department. The fabric store has 3 1/6 yards of the fabric she wants in stock.
    14·1 answer
  • Sara is working on a Geometry problem in her Algebra class. The problem requires Sara to use the two quadrilaterals below to ans
    8·1 answer
  • Factorise 18a³b³- 27a²b³ +36a³b²​
    8·1 answer
  • Which is the best estimate of StartRoot 47 EndRoot to the nearest tenth?
    14·2 answers
  • In ΔSTU, the measure of ∠U=90°, TU = 6.6 feet, and US = 2.3 feet. Find the measure of ∠S to the nearest tenth of a degree.
    11·2 answers
  • 7. Tamara goes on a spring break trip with her school to visit historical sites in Italy. She purchases $200 of souvenirs while
    10·3 answers
  • 11. If 4 &lt; x &lt; 14, what is the range for -x - 4?
    13·1 answer
  • Which type of parent function does the equation f(x) = 1 represent?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!