f(x) = 0.5x - money per ticket
g(x) = 8x - tickets per hour
We replace g(x) with its value (8x).
f(g(x)) = f(8x)
We replace the x in f(x) with 8x.
f(8x) = 0,5 × 8x
f(8x) = 4x
<u>⇒ f(g(x)) = 4x</u>
<u></u>
Correct answer:
a.<em> f(g(x)) = 4x, which represents the money Aurora made in dollars per hour</em>
Menjawab:
[(√1-p²) -3√p] / 2
Penjelasan langkah demi langkah:
Dari identitas trigonometri, pemuaiannya benar:
Cos (A + B) = cosAcosB-sinAsinB
Menerapkan ini dalam memperluas cos (x + 60).
cos (x + 60) = cosxcos60 - sinxsin60
Jika sinx = p = berlawanan / sisi miring
opp = p, hyp = 1
adj² = 1²-p²
adj = √1-p²
Cos (x) = adj / hyp = √1-p² / 1
Cos (x) = √1-p²
Cos60 = 1/2 dan sin60 = √3 / 2
Mengganti nilai-nilai ini ke dalam rumus
cos (x + 60) = cosxcos60 - sinxsin60
cos (x + 60) = √1-p² (1/2) - p (√3 / 2)
cos (x + 60) = (√1-p²) / 2 - √3p / 2
Temukan KPK tersebut
cos (x + 60) = [(√1-p²) -3√p] / 2
Oleh karena itu cos (x + 60) = [(√1-p²) -3√p] / 2
Answer:
carrie can invite 5 friends with some money left over
Step-by-step explanation:
12f+10<75
12f<75-10 *carry the 10 over
12f<65 *simplify
f<65/12 *carry the 12 over
f<5.42 *simplify
Answer:
a) 20 ways
b) 10 ways
Step-by-step explanation:
When the order of selection/choice matters, we use Permutations to find the number of ways and if the order of selection/choice does not matter, we use Combinations to find the number of ways.
Part a)
We have to chose 2 objects from a group of 5 objects and order of choice matters. This is a problem of permutations, so we have to find 5P2
General formula of permutations of n objects taken r at time is:

Using the value of n=5 and r=2, we get:

Therefore, we can choose 2 objects from a group of 5 given objects if the order of choice matters.
Part b)
Order of choice does not matter in this case, so we will use combinations to find the number of ways of choosing 2 objects from a group of 5 objects which is represented by 5C2.
The general formula of combinations of n objects taken r at a time is:

Using the value of n=5 and r=2, we get:

Therefore, we can choose 2 objects from a group of 5 given objects if the order of choice does not matters.