answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
2 years ago
15

Orthographic drawings are used to express ideas that are more complicated. Explain the purpose of the different views and the im

portance of view alignment
Engineering
2 answers:
MrRissso [65]2 years ago
7 0

Answer:

Explanation:

Orthographic drawings represent 3D objects using 2D projections.

If you wanted to show what a car looked like and were limited to 2D drawings, you might show a sketch of the front of the car, the side of the car, and the back of the car. These orthographic projects show all the detail of the cars different "sides" effectetly using 2D drawings.

These projections should be aligned such that features of the car can be cross-referenced between different projections.

polet [3.4K]2 years ago
4 0

Answer:

Explanation:

Orthographic drawings represent 3D objects using 2D projections.

If you wanted to show what a car looked like and were limited to 2D drawings, you might show a sketch of the front of the car, the side of the car, and the back of the car. These orthographic projects show all the detail of the cars different "sides" effectetly using 2D drawings.

These projections should be aligned such that features of the car can be cross-referenced between different projections.

You might be interested in
A platinum resistance temperature sensor has a resistance of 120 Ω at 0℃ and forms one arm of a Wheatstone bridge. At this tempe
oksian1 [2.3K]

Answer : 9.36ohms/ temperature

Explanation:

Expression for the variation of resistance of platinum with temperature

Rt= Ro(1+*t)

Rt= resistance @ t°C

Ro= resistance @ 0°C

*= temperature coefficient of resistance

Calculate the change in resistance by putting 120ohms for Ro,

0.0039/K for *

20°C for t

Using this formula:

Rt = Ro(1+*t)

Rt- Ro = Ro*t

= (120ohms)(0.0039/K)(20°C)

= 9.36ohms/K

8 0
2 years ago
A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
kozerog [31]

Answer:

a)Wt =25.68 lbf

b)Wt = 150 lbf

F= 899.59 N

Explanation:

Given that

g = 5.48 ft/s^2.

m= 150 lbm

a)

Weight on the spring scale(Wt) = m g

We know that

1\ lbf=32.17 \ lmb.ft/s^2

Wt = 150 x 5.48/32 lbf

Wt =25.68 lbf

b)

On the beam scale

This is scale which does not affects by gravitational acceleration.So the wight on the beam scale will be 150 lbf.

Wt = 150 lbf

If the plane is moving upward with acceleration 6 g's then the for F

F = m a

We know that

1\ ft/s^2= 0.304\ m/s^2

5.48\ ft/s^2= 1.66\ m/s^2

a=6 g's

a=9.99\ m/s^2

So

F = 90 x 9.99 N

F= 899.59 N

3 0
2 years ago
A cylindrical specimen of a brass alloy having a length of 60 mm (2.36 in.) must elongate only 10.8 mm (0.425 in.) when a tensil
Gemiola [76]

The radius of the specimen is 60 mm

<u>Explanation:</u>

Given-

Length, L = 60 mm

Elongated length, l = 10.8 mm

Load, F = 50,000 N

radius, r = ?

We are supposed to calculate the radius of a cylindrical brass specimen in order to produce an elongation of 10.8 mm when a load of 50,000 N is applied. It is necessary to compute the strain corresponding to this

elongation using Equation:

ε = Δl / l₀

ε = 10.8 / 60

ε = 0.18

We know,

σ = F / A

Where A = πr²

According to the stress-strain curve of brass alloy,

σ = 440 MPa

Thus,

sigma = 50,000 / \pi  (r)^2\\\\440 X 10^6 = \frac{50,000}{3.14 X (r)^2}\\\\r = 0.06m\\r = 60mm\\\\\\

Therefore, the radius of the specimen is 60 mm

3 0
2 years ago
A double-acting duplex pump with 6.5-in. liners, 2.5-in. rods, and 18-in. strokes was operated at 3,000 psig and 20 cycles/min.
Stella [2.4K]

Answer:

Pump factor = Fp =  7.854 gal/cycle

Ev = 82.00 %

P_H = 183.29 hp

Explanation:

Given data:

Dimension of duplex pump

6.5 inch liner  

2.5 inch rod

18 inch strokes

Pressure 3000 psig

Pit dimension

7 ft wide

20 ft long

Ls = 18 inch

Velocity = (18)/10

volumetric efficiency is given as E_v = (Actual flow rate)/(Theortical flow rate) * 100

we know that flow rate is given as = Area * velocity

Theoritical flow rate = \frac{\pi}{2}\times Ls(2d_l^2 - d_r^2)\times N

Ev = \frac{7\times 12 \times 20\times 12\times 12 \times \frac{18}{10} inch^3/min}{\frac{\pi}{2} \times 18 (2\times 6.5^2 -2.5^2) \times 20}

Ev = 82.00 %

Pump factor Fp = = \frac{\pi}{2}\times Ls(2d_l^2 - d_r^2)\times Ev

Fp =\frac{\pi}{2} \times 18 (2\times 6.5^2 -2.5^2) \times 0.82

Fp = 1814.22 in^3/cyl

Fp =  7.854 gal/cycle

Flow rate q = NFp = 20 \times 7.854 = 157.08 gal/min

Power Ph = \frac{\DeltaP q}{1714} = \frac{3000 \times 157.08}{1714} = 274.93 hp

6 0
2 years ago
A thermal energy storage unit consists of a large rectangular channel, which is well insulated on its outer surface and encloses
yaroslaw [1]

Answer:

the temperature of the aluminum at this time is 456.25° C

Explanation:

Given that:

width w of the aluminium slab = 0.05 m

the initial temperature T_1 = 25° C

T{\infty} =600^0C

h = 100 W/m²

The properties of Aluminium at temperature of 600° C by considering the conditions for which the storage unit is charged; we have ;

density ρ = 2702 kg/m³

thermal conductivity k = 231 W/m.K

Specific heat c = 1033 J/Kg.K

Let's first find the Biot Number Bi which can be expressed by the equation:

Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{h \dfrac{w}{2}}{k}

Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{100 \times \dfrac{0.05}{2}}{231}

Bi = \dfrac{2.5}{231}

Bi = 0.0108

The time constant value \tau_t is :

\tau_t = \dfrac{pL_cc}{h} \\ \\ \tau_t = \dfrac{p \dfrac{w}{2}c}{h}

\tau_t = \dfrac{2702* \dfrac{0.05}{2}*1033}{100}

\tau_t = \dfrac{2702* 0.025*1033}{100}

\tau_t = 697.79

Considering Lumped capacitance analysis since value for Bi is less than 1

Then;

Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]

where;

Q = -\Delta E _{st} which correlates with the change in the internal energy of the solid.

So;

Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]= -\Delta E _{st}

The maximum value for the change in the internal energy of the solid  is :

(pVc)\theta_1 = -\Delta E _{st}max

By equating the two previous equation together ; we have:

\dfrac{-\Delta E _{st}}{\Delta E _{st}{max}}= \dfrac{  (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]} { (pVc)\theta_1}

Similarly; we need to understand that the ratio of the energy storage to the maximum possible energy storage = 0.75

Thus;

0.75=  [1-e^{\dfrac {-t}{ \tau_1}}]}

So;

0.75=  [1-e^{\dfrac {-t}{ 697.79}}]}

1-0.75=  [e^{\dfrac {-t}{ 697.79}}]}

0.25 =  e^{\dfrac {-t}{ 697.79}}

In(0.25) =  {\dfrac {-t}{ 697.79}}

-1.386294361= \dfrac{-t}{697.79}

t = 1.386294361 × 697.79

t = 967.34 s

Finally; the temperature of Aluminium is determined as follows;

\dfrac{T - T _{\infty}}{T_1-T_{\infty}}= e ^ {\dfrac{-t}{\tau_t}}

\dfrac{T - 600}{25-600}= e ^ {\dfrac{-967.34}{697.79}

\dfrac{T - 600}{25-600}= 0.25

\dfrac{T - 600}{-575}= 0.25

T - 600 = -575 × 0.25

T - 600 = -143.75

T = -143.75 + 600

T = 456.25° C

Hence; the temperature of the aluminum at this time is 456.25° C

3 0
2 years ago
Other questions:
  • How much extra water does a 21.5 ft, 175-lb concrete canoe displace compared to an ultra-lightweight 38-lb Kevlar canoe of the s
    8·1 answer
  • At a certain college, 30% of the students major in engineering, 20% play club sports, and 10% both major in engineering and play
    14·1 answer
  • A steady tensile load of 5.00kN is applied to a square bar, 12mm on a side and having a length of 1.65m. compute the stress in t
    13·1 answer
  • Add a calculated field named AccountTime that calculates the number of days each client's accounts have been open. Assume today'
    6·1 answer
  • A gas pressure difference is applied to the legs of a U-tube manometer filled with a liquid with specific gravity of 1.7. The ma
    15·2 answers
  • Water is to be withdrawn from an 8-m-high water reservoir by drilling a 2.2-cm-diameter hole at the bottom surface. Disregarding
    12·2 answers
  • A flexural member is fabricated from two flange plates 7-1/2 x ½ and a web plate 17 x 3/8. The yield stress of steel is 50 ksi.
    8·1 answer
  • Milton has been tracking the migrating patterns of whales in the northwest Atlantic Ocean for five years. He knows where and whe
    5·2 answers
  • A dryer is shaped like a long semi-cylindrical duct of diameter 1.5 m. The base of the dryer is occupied with water-soaked mater
    9·1 answer
  • Mr. Ray deposited $200,000 in the Old and Third National Bank. If the bank pays 8% interest, how much will he have in the accoun
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!