Answer:
Step-by-step explanation:
The problem relates to filling 8 vacant positions by either 0 or 1
each position can be filled by 2 ways so no of permutation
= 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
= 256
b )
Probability of opening of lock in first arbitrary attempt
= 1 / 256
c ) If first fails , there are remaining 255 permutations , so
probability of opening the lock in second arbitrary attempt
= 1 / 255 .
Answer: 23 y 24 ( ó -23 y -24)
Step-by-step explanation:
Dos números consecutivos se escriben como:
n y (n + 1)
done n es un numero entero.
Entonces "El producto de dos números consecutivos es 552"
Se escribe como:
n*(n + 1) = 552
n^2 + n = 552
n^2 + n - 552 = 0
Tenemos una cuadrática, las posibles soluciones son obtenidas con la formula de Bhaskara.

Las dos soluciones son.
n = (-1 - 47)/2 = -48/2 = -24
n = (-1 + 47)/2 = 46/2 = 23
Si tomamos la primer solución, n = -24
Entonces los dos números consecutivos son:
n = -24
(n + 1) = -23
Si n = 23 entonces
n + 1 = 24
Lo cual tiene sentido, por que lo único que cambia son los signos, los cuales se cancelarían en la multiplicación.
Answer:
The first digit of a two digit number can be any of digits 1 - 9. It cannot be 0 though. Therefore there are 9 possible digits for the first place.
There are 5 possible digits for the second position. The two digit number has to be odd and therefore the final digit must be 1,3,5,7 or 9
Therefore for each and every one of the nine first digits there are 5 digits that the second can be.
Therefore ANSWER = 9 * 5 = 45 possible permutations.
2. The largest two digit number = 99
Subtract 57 and you get 42
ANSWER = 42
The forty two numbers are 58 ,59, 60, 61......98, 99
Answer:
8 is your answer
Step-by-step explanation:
First plug in 6
6÷3+6
Then divide 6/3 which is 2
so 2+6 is 8

Cross multiply.
5.4x=9*25.8
5.4x=232.2 Divide both sides by 5.4
x=43