Answer:
The 95 percent confidence interval for the mean of the population from which the study subjects may be presumed to have been drawn is (19.1269, 32.6730).
Step-by-step explanation:
Intern No. of Breast
Number Exams Performed X²
1 30 900
2 40 1600
3 8 64
4 20 400
5 26 676
6 35 1225
7 35 1225
8 20 400
9 25 625
<u>10 20 400 </u>
<u> </u><u> ∑ 259 ∑ 7515</u>
Mean= X`= ∑x/n= 259/10= 25.9
Variance = s²= 1/n-1[∑X²- (∑x)²/n]
= 1/0[7515- (259)²/10]= 1/9[7515- 6708.1]
= 806.9/9=89.655= 89.66
Standard Deviation= √89.655= 9.4687
Hence
The value of t with significance level alpha= 0.05 and 9 degrees of freedom is t(0.025,9)= 2.262
The 95 % Confidence interval is given by
x`±t(∝,n-1) s/√n
So Putting the values
25.9± 2.262( 9.4687/√10)
= 25.9 ±2.262 (2.9943)
= 25.9 ± 6.7730
= 25.9 +6.7730=32.6730
25.9 -6.7730= 19.1269
= 19.1269, 32.6730
The 95 percent confidence interval for the mean of the population from which the study subjects may be presumed to have been drawn is (19.1269, 32.6730).
Let x be a random variable representing the number of skateboards produced
a.) P(x ≤ 20,555) = P(z ≤ (20,555 - 20,500)/55) = P(z ≤ 1) = 0.84134 = 84.1%
b.) P(x ≥ 20,610) = P(z ≥ (20,610 - 20,500)/55) = P(z ≥ 2) = 1 - P(z < 2) = 1 - 0.97725 = 0.02275 = 2.3%
c.) P(x ≤ 20,445) = P(z ≤ (20,445 - 20,500)/55) = P(z ≤ -1) = 1 - P(z ≤ 1) = 1 - 0.84134 = 0.15866 = 15.9%
1) The outcomes for rolling two dice, the sample space, is as follows:
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
There are 36 outcomes in the sample space.
2) The ways to roll an odd sum when rolling two dice are:
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5). There are 18 outcomes in this event.
3) The probability of rolling an odd sum is 18/36 = 1/2 = 0.5
Answer: 16.2%
Step-by-step explanation:
You can find the cost of equity using the Capital Asset Pricing Model (CAPM).
Cost of equity = Risk free rate + Beta * (Expected return on market - Risk free rate)
= 6% + 1.2 * (14.50 - 6%)
= 6% + 10.2%
= 16.2%