Two reasons Eugleoids are considered to be animal-like is because they can move from one place to another, and are heterotrophic (consumes food made by other organisms) or >> reproduces by fission << could be another option.
Answer:
relaxes
Explanation:
Acetylcholine is the substance responsible for the transmission of nerve impulses from pre-postganglionic neurons, in the ganglia of the autonomic nervous system. At the level of the parasympathetic nervous system, the transmission between the postganglionic neuron and the effector organ also mediates. In addition, it is the mediator of the nerve transmission of the terminal motor plate.
There are large differences in the effects that Acetylcholine triggers at different cholinergic transmission sites
Intra-arterial injection near Acetylcholine produces muscle contraction similar to that caused by motor nerve stimulation. Decreased resting potential in isolated intestinal muscle and increased frequency of spike production, accompanied by increased tension. In the cardiac conduction system, nodes S-A and A-V, it produces inhibition and hyperpolarization of the fiber membrane; and pronounced decrease in depolarization speed. Central regulation of extrapyramidal motor function. Exciting effect of the basal ganglia that counteracts the inhibitory action of Dopamine. Although cholinergic innervation of blood vessels is limited, cholinergic muscarinic receptors occur in sympathetic vasoconstrictor nerves. The vasodilator effect on isolated blood vessels requires the presence of an intact endothelium. The activation of muscarinic receptors causes the release of a vasodilator substance - <u>relaxing factor derived from the endothelium - that diffuses to the smooth muscle producing </u><u>relaxation</u><u>.</u>
The positioning of the body where are major body parts are flexed is called the fetal position. In this position the back is arched forward and arms and legs are drawn closer to the torso and the head bowed. It is called this because this is the position the fetus is in as it develops in the womb.
Answer:
the concentration of the solute is lower inside the cell than outside it
Explanation:
This question depicts the process of ACTIVE TRANSPORT, which is the movement of a substance against concentration gradient, hence, requires energy input (ATP) to occur. In this case, transporting a solute from inside an animal cell to the extracellular fluid across the cell membrane always requires energy.
This is because the concentration of solute inside the cell is much lower than that of the extracellular fluid, hence, to move the solutes against this concentration gradient (low to high), energy in form of ATP is required.