For the answer to the question above, I think this is <span>False and the answer is based on the book, Nirenberg, and Matthaei. 19- unlabeled amino acids. Cys-Val-Cys-Val. (pg. 318 & 319)</span>. I hope I helped you somehow. Have a nice day!
<span>B, enzymes will denature at that temperature. Sucrase has an optimal temperature of about 37 degrees celsius so 1000 would definitely be too high for them to work.</span>
Answer:
Placing salty water in A and distilled water in B.
Explanation:
The fastest net rate of water movement into the A-side will occur if we place salty water on that side and distilled water in the other one. The reason for this is that the A-side contains a higher concentration of solute than B. So, the water will pass the semipermeable membrane and go to the A-side to valance the concentrations on both sides. As we can see, there is an increase in the net rate of water movement into A.
The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>
Answer:
Crossing over
Explanation:
Crossing over is the process during which two chromatids of two homologous chromosomes exchange part of their genetic segments. It occurs during the pachytene stage of prophase I of meiosis I.
Linked genes are mostly inherited together and do not exhibit independent assortment. However, when linked genes are present far apart from each other on the same chromosome, crossing over can occur between them to produce recombinant chromatids. Therefore, crossing over can break the linkage and produce recombinant progeny as it occurs during the independent assortment of unlinked genes.