Answer:
D. D: 0 ≤ b ≤ 10; R: 0 ≤ W(b) ≤ 120
Step-by-step explanation:
The problem statement tells you Owen can build up to 10 birdhouses, and that b represents that number. Then 0 ≤ b ≤ 10 is the domain described by the problem statement.
It also tells you that W(b) = 12b, so filling in values from 0 to 10 gives a range from 0 to 120: 0 ≤ W(b) ≤ 120.
These observations match choice D.
Answer:
A. 1 in. = 22.5 mi
Step-by-step explanation:
Since 22.5 x 10 = 225, we can conclude that this will fit the scale needed. B. is incorrect because it is simply illogical in context with a scale and the question. C. is incorrect since 10 x 0.04 is 0.4, which does not equal 10. D. is incorrect since we need the scale to add up to equal 225 mi, not 22.5.
Hope this helps!
Answer:
Solution-
We know that,
Residual value = Given value - Predicted value
The table for residual values is shown below,
Plotting a graph, by taking the residual values on ordinate and values of given x on abscissa, a random pattern is obtained where the points are evenly distributed about x-axis.
We know that,
If the points in a residual plot are randomly dispersed around the horizontal or x-axis, a linear regression model is appropriate for the data. Otherwise, a non-linear model is more appropriate.
As, in this case the points are distributed randomly around x-axis, so the residual plot show that the line of regression is best fit for the data set.
Hope this helps!
Step-by-step explanation:
Answer:
G = 14 - 1.75(t)
Where G is the number of gallons of gas remaining;
14 represents the amount of gas in gallons in the full gas tank of the vehicle
t is the number of hours
Step-by-step explanation:
Here, we want to write an equation.
We are told that the car uses 1.75 gallons of gas every hour and after 4 hours 7 gallons were left
In the 4 hours, the amount of fuel used will be 1.75 * 4 = 7 gallons
So therefore since we have 7 gallons left, the amount of gallons in the full tank of the vehicle will be 7 + 7 = 14 gallons
Hence, the equation we want to write will be;
G = 14 - 1.75(t)
Answer:
The expressions are not equivalent because Ella did not know that you can’t use substitution to test for equivalence.
Step-by-step explanation:
Equivalent algebraic expressions are those expressions which on simplification give the same resulting expression.
Two algebraic expressions are said to be equivalent if their values obtained by substituting any values of the variables are same.
Two expressions 3f+2.6 and 2f+2.6 are not equivalent, because when f=1,
3f + 2.6 = 3.1 + 2.6 = 3 + 2.6 = 5.6
2f + 2.6 = 2.1 + 2.6 = 2 + 2.6 = 4.6
5.6 = 4.6
Method of substitution can only help her to decide the expresssions are not equivalent, but if she wants to prove the expressions are equivalent, she must prove it for all values of f.
3f + 2.6 = 2f + 2.6
3f = 2f
3f - 2f = 0
f = 0
This is true only when f=0.
Hence,
The expressions are not equivalent because Ella did not know that you can’t use substitution to test for equivalence.