The answer is:
1- A line of symmetry will connect a vertex and a midpoint of an opposite side.
2- It has
-fold symmetry.
The explanation for this answer is shown below:
1- By definition, a line of symmetry is an imaginary line that divides a figure into two equal images or equal halves. If you connect a vertex and a midpoint of an opposite side of an heptagon by drawing a line, you will obtain two equal halves.
2- An heptagon has seven vertices, therefore, based on the information mentioned above, it has
-fold symmetry.
Notice that

so the constraint is a set of two lines,

and only the first line passes through the first quadrant.
The distance between any point
in the plane is
, but we know that
and
share the same critical points, so we need only worry about minimizing
. The Lagrangian for this problem is then

with partial derivatives (set equal to 0)



We have

which tells us that

so that
is a critical point. The Hessian for the target function
is

which is positive definite for all
, so the critical point is the site of a minimum. The minimum distance itself (which we don't seem to care about for this problem, but we might as well state it) is
.
Answer:
Step-by-step explanation:
So there is a 3% probability that an athlete is using EPO .
The probability of showing positive on a test when you've used it is 0.99.
3% x 0.99= 2.97%
The probability of a positive result without EPO is 0.1
97% x 0,1 = 9,7 %
My guess is that 2.97% + 9,7% = 12.67% or 0.1267.
I don't know i may be wrong because you've put as an answer 0.0297 but if you like you may take only the first part of the answer.
Answer:
The translation is
unit to the left and
units down
Step-by-step explanation:
we have

-----> parent function
we know that
The transformation
f(x)-----> g(x) has the following rule

That means
The translation is
unit to the left and
units down
see the attached figure to better understand the problem
We have that the spring is going to have a sin or a cos equation. We have that the maximum distance of the spring is 6 inches and it is achieved at t=0. Let's fix this as the positive edge. Until now, we have that the function is of the form:
6sin(at+B). We have that the period is 4 minutes and hence that the time component in the equation needs to make a period (2pi) in 4 minutes. Thus 4min*a=2p, a=2p/4=pi/2. In general, a=2pi/T where a is this coefficient, T is the period. Finally, for B, since sin(pi/2)=1, we have that B=pi/2 because when t=0, we have that 6sin(B)=6. Substituting, we have f(t)=6sin(pi*t/2+pi/2)=6cos(pi*t/2)
by trigonometric identities.