In eukaryotes, <em>replication takes place in the nucleus</em> as prokaryotes do not have a true nucleus and <em>replication takes place in the cytoplasm</em>. The nucleus of the eukaryotes is the location where genetic material (DNA) is found; in prokaryotes, the genetic material is condensed in the cytoplasm called the nucleoid. There are multiple replication forks or <em>multiple origins of replication </em>in eukaryotes in contrast to prokaryotes which only has <em>one origin of replication. </em>Lastly, replication in eukaryotes <em>occurs at multiple points along the chromosome; </em>in contrast with prokaryotes where it <em>occurs at just one point on the chromosome.</em>
Answer:
The micrographs of cells shown in figure 8-3. what information about cells do these micrographs suggest is explained below in details.
Explanation:
Micrographs are the intensified images collected from small microscopes. Cell micrographs are often obtained from tissue specimens and show a constant mass of cells and inside compositions that are difficult to distinguish individually. It provides accurate images of the exteriors of cells and whole plants that are not imaginable by TEM. It can also be practiced for particle counting and size resolution, and method control.
Answer:the answer is B hope this help
Explanation:
Answer:
Explanation:
Active transport is the movement of molecules or substance from a region of lower concentration to a region of higher concentration across a cell membrane against the concentration gradient.
Active transport requires cellular energy and are of two types:
primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient.
Active transport helps in the uptake of glucose in the intestines.
Cotransport or secondary active transport is the movement of molecules across a membrane it uses electrochemical potential difference that is created by pumping ions in or out of the cell.
Cotransport helps in the transport of glucose across the cell membrane.
A silent mutation. This is when the new codon will work just as well as the old one without changing the amino acid shape.