The zero product property tells us that if the product of two or more factors is zero, then each one of these factors CAN be zero.
For more context let's look at the first equation in the problem that we can apply this to:

Through zero property we know that the factor

can be equal to zero as well as

. This is because, even if only one of them is zero, the product will immediately be zero.
The zero product property is best applied to
factorable quadratic equations in this case.
Another factorable equation would be

since we can factor out

and end up with

. Now we'll end up with two factors,

and

, which we can apply the zero product property to.
The rest of the options are not factorable thus the zero product property won't apply to them.
Answer:
2.1/√55
Step-by-step explanation:
simga divided by sample size
Volume of cube=side³
ok, so you need to know the difference or sum of cubes
a³+b³=(a+b)(x²-xy+y²)
so
(4p)³+(2q²)³=
(4p+2q²)((4p)²-(4p)(2q²)+(2q²)²)=
(4p+2q²)(16p²-8pq²+4q⁴)
3rd option
To solve for the system of equations, I will write the equation down as I rewrite the written form.
a number, n, (n) is added to 15 less than 3 times itself (+3n -15). The result is (=) 101. (101)
Now let's write only what's in the parenthesis.
n + 3n -15 = 101.
The correctly written form in your answers is:
3n - 15 + n = 101, your first answer.