In order to construct this equation, we will use the variables:
V to represent mixture volume (40 ml)
C to represent mixture concentration (0.32)
v₁ to represent volume of first solution (40 / 4 = 10 ml)
c₁ to represent concentration of first solution (0.2)
v₂ to represent the volume of the second solution (40 * 3/4 = 30 ml)
c₂ to represent the concentration of the second solution
We know that the total amount of substance, product of the volume and concentration, in the final solution is equal to the individual amounts in the two given solutions. Thus:
VC = v₁c₁ + v₂c₂
40(0.32) = 10(0.2) + 30c
Answer:

And when we apply the limit we got that:

Step-by-step explanation:
Assuming this complete problem: "The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit . 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2"
We have the following formula in order to find the sum of cubes:

We can express this formula like this:
![\lim_{n\to\infty} \sum_{n=1}^{\infty}i^3 =\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Di%5E3%20%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
And using this property we need to proof that: 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
![\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
If we operate and we take out the 1/4 as a factor we got this:

We can cancel
and we got

We can reorder the terms like this:

We can do some algebra and we got:

We can solve the square and we got:

And when we apply the limit we got that:

we are given

Since, we have to solve for b

so, we will isolate b ony one side
so, we will add 60 on both sides



so,
Answer:
Maureen should have added 60 to both sides.
Answer:
Option (a) is correct.
The value of given function
at x = 3 is -28
Step-by-step explanation:
Given : Function 
We have to find the value of given function at x = 3
Consider the given function 
Since, we have tof ind the value of function at x = 3
Put x = 3 in given function f(x)

Simplify, we have,

Thus, the value of given function
at x = 3 is -28
Hello there.
<span>
If p and q are nonzero integers, which pair of points must lie in the same quadrant?
</span>
<span>B. (p, q) and (2p, 2q)
</span>