answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
2 years ago
10

Define a function pyramid_volume with parameters base_length, base_width, and pyramid_height, that returns the volume of a pyram

id with a rectangular base. Sample output with inputs: 4.5 2.1 3.0 Volume for 4.5, 2.1, 3.0 is: 9.45 Relevant geometry equations: Volume

Engineering
1 answer:
Maslowich2 years ago
5 0

Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.

Answer:

1. def pyramid_volume(base_length, base_width, pyramid_height):

2.     volume = base_length*base_width*pyramid_height/3

3.     return(volume)

Explanation step by step:

  1. In the first line of code, we define the function pyramid_volume and it's input parameters
  2. In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
  3. In the last line of code, we return the volume  

In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.

You might be interested in
A fatigue test was conducted in which the mean stress was 46.2 MPa and the stress amplitude was 219 MPa.
sleet_krkn [62]

Answer:

a)σ₁ = 265.2 MPa

b)σ₂ = -172.8 MPa

c)Stress\ ratio =-0.65

d)Range = 438 MPa

Explanation:

Given that

Mean stress ,σm= 46.2 MPa

Stress amplitude ,σa= 219 MPa

Lets take

Maximum stress level = σ₁

Minimum stress level =σ₂

The mean stress given as

\sigma_m=\dfrac{\sigma_1+\sigma_2}{2}

2\sigma_m={\sigma_1+\sigma_2}

2 x 46.2 =  σ₁ +  σ₂

 σ₁ +  σ₂ = 92.4 MPa    --------1

The amplitude stress given as

\sigma_a=\dfrac{\sigma_1-\sigma_2}{2}

2\sigma_a={\sigma_1-\sigma_2}

2 x 219 =  σ₁ -  σ₂

 σ₁ -  σ₂ = 438 MPa    --------2

By adding the above equation

2  σ₁ = 530.4

σ₁ = 265.2 MPa

-σ₂ = 438 -265.2 MPa

σ₂ = -172.8 MPa

Stress ratio

Stress\ ratio =\dfrac{\sigma_{min}}{\sigma_{max}}

Stress\ ratio =\dfrac{-172.8}{265.2}

Stress\ ratio =-0.65

Range = 265.2 MPa - ( -172.8 MPa)

Range = 438 MPa

8 0
2 years ago
When should you exercise extreme caution around power lines?
Elis [28]

<em>You should take note and exercise extreme precautions when you are near power lines and consider the following: </em>

<em> </em>

<em>1. Make sure that you have a good distance away from the lines. The minimum distance you can get is 10 feet away from the lines. Be cautious as well when you see broken lines as they could still harm you and electrified you. </em>

<em>2. Do not make ladders, equipments and things around you touch the power lines as it may harm you as well. </em>

<em>3. Clear everything and ensure that no things are near you before you lift your hands and other tools.</em>

6 0
2 years ago
Tech A says that as moisture levels increase in brake fluid, the boiling point of the brake fluid decreases. Tech B says that fi
dezoksy [38]

Answer: Both Technician A and B are correct.

Explanation:

Technicians A and B are both right about their diagnosis. The Society of Automotive Engineers performed extensive research on vehicle brake fluids and found that there is typically a 2% moisture content in the brake fluid after a year of operating a vehicle. And as the moisture content of the brake fluid rises, the boiling point of the brake fluid decreases as well.

4 0
2 years ago
An overpass is being built over the PVI of an existing equal-tangent sag curve. The sag curve has a 70 mi/h design speed and G1=
vivado [14]

Answer: Resultant elevation will be 30.98 ft

8 0
2 years ago
A 20 dBm power source is connected to the input of a directional coupler having a coupling factor of 20 dB, a directivity of 35
lukranit [14]

Answer:

P_O = 0.989 watt = 19.9 dBm

Explanation:

Given data:

P_1 power = 20 dBm  = 0.1 watt

coupling factor is 20dB

Directivity = 35 dB

We know that

coupling factor = 10 log \frac{P_1}{P_f}

solving for  final power

20 = 10 log\frac{P_1}{P_f}

2 = log \frac{P_1}{P_f}

100 = \frac{0.1}{P_f}

P_f = 0.001 watt = 0 dBm

Directivity D =  10 \frac{P_f}{P_b}

35 = 10 \frac{0.001}{P_b}

P_b = 3.162 \times 10^{-7} wattt

output Power  = P_1 -P_f - P_b

                       = 0.1 - 0.001 - 3.162 \times 10^{-7}

P_O = 0.989 watt = 19.9 dBm

6 0
2 years ago
Other questions:
  • 1. Create a class called Name that represents a person's name. The class should have fields named firstName representing the per
    8·2 answers
  • Universal Containers (UC) has a requirement to expose a web service to their business partners. The web service will be used to
    10·1 answer
  • You are an electrician on the job. The electrical blueprint shows that eight 500-W lamps are to be installed on the same circuit
    11·1 answer
  • Refrigerant-134a enters the coils of the evaporator of a refrigeration system as a saturated liquid–vapor mixture at a pressure
    5·1 answer
  • Consider an infinitely thin flat plate of chord c at an angle of attack α in a supersonic flow. The pressure on the upper and lo
    10·1 answer
  • Discuss your interpretation of the confidence-precision trade-off, and provide a few examples of how you might make a choice in
    14·1 answer
  • Consider a steady developing laminar flow of water in a constant-diameter horizontal discharge pipe attached to a tank. The flui
    14·1 answer
  • what is the advantage of decreasing the field current of a separately excited dc motor below its nominal value
    7·1 answer
  • The typical Canadian worker is able to produce 100 board feet (a unit of measure) of lumber or 1000 light bulbs per year. The wo
    12·1 answer
  • A dryer is shaped like a long semi-cylindrical duct of diameter 1.5 m. The base of the dryer is occupied with water-soaked mater
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!