I believe the correct answer among the choice presented above is the second option. The minimum number of points needed to determine the equation of a line containing those points is two. This is because two points is also needed to make or define a line.
Te difference of 2 standard deviation of a population n1 & n2 is given by the formula:
sigma (difference)=√(sigma1/n1 + sigma2/n2), Plug:
sigma(d)= √(49/100 + 36/50)
Sigma(d=difference) =1.1
Answer:
p-value (0.0208) is less than alpha = 0.05 reject H0.
Step-by-step explanation:
we have the following data:
sample size = n = 75
x, the number to evaluate is 45
the sample proportion would be: x / n = 45/75
p * = 0.6
Now, the null and alternative hypotheses are:
H0: P = 0.72
Ha: P no 72
two tailed test
statistic tes = z = (p * - p) / [(p * (1-p) / n)] ^ (1/2)
replacing we have:
z = (0.6 - 0.72) / [(0.72 * (1-0.72) / 75)] ^ (1/2)
z = -2.31
p-vaule = 2 * p (z <-2.31)
using z table, we get:
p-vaule = 2 * (0.0104)
p-vaule = 0.0208
Therefore, p-value (0.0208) is less than alpha = 0.05 reject H0.
Answer:
You would have to divide kcf and simplify :)
Step-by-step explanation:
Given : tan 235 = 2 tan 20 + tan 215
To Find : prove that
Solution:
tan 235 = 2 tan 20 + tan 215
Tan x = Tan (180 + x)
tan 235 = tan ( 180 + 55) = tan55
tan 215 = tan (180 + 35) = tan 35
=> tan 55 = 2tan 20 + tan 35
55 = 20 + 35
=> 20 = 55 - 35
taking Tan both sides
=> Tan 20 = Tan ( 55 - 35)
=> Tan 20 = (Tan55 - Tan35) /(1 + Tan55 . Tan35)
Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1
=> Tan 20 = (Tan 55 - Tan 35) /(1 + 1)
=> Tan 20 = (Tan 55 - Tan 35) /2
=> 2 Tan 20 = Tan 55 - Tan 35
=> 2 Tan 20 + Tan 35 = Tan 55
=> tan 55 = 2tan 20 + tan 35
=> tan 235 = 2tan 20 + tan 215
QED
Hence Proved