<span>A touch screen gives response and acts simply with a touch on the screen area. Reflective screen is not a basic type of touch screen. The reflection can be reduced for the touch screen when it is combined with the LCD and the screen still be very visible. These screens can be anti glare and safe to the eyes.</span>
Answer:
mobility and broad reach
Explanation:
The two major characteristics of mobile computing are:
Mobility: It basically refers to the portability. Mobility means that users can carry their mobile device wherever they go. This facilitates real-time communication with other devices. Users can take a mobile device anywhere and can contact with other devices and systems via a wireless network for example a user, wherever he happens to be, can log in to his email account to check his emails using his mobile phone.
Broad Reach: It basically means that the mobile device users can be reached at any time. This means that the users of an open mobile device can be instantaneously contacted. Having an open mobile device means that it can be reached by or connected to other mobile networks. However mobile users also have options to restrict specific messages or calls.
Answer:



So then the value of the maximum I/O wait that can be tolerated is 0.720 or 72 %
Explanation:
Previous concepts
Input/output operations per second (IOPS, pronounced eye-ops) "is an input/output performance measurement used to characterize computer storage devices like hard disk drives (HDD)"
Solution to the problem
For this case since we have 4GB, but 512 MB are destinated to the operating system, we can begin finding the available RAM like this:
Available = 4096 MB - 512 MB = 3584 MB
Now we can find the maximum simultaneous process than can use with this:

And then we can find the maximum wait I/O that can be tolerated with the following formula:

The expeonent for p = 14 since we got 14 simultaneous processes, and the rate for this case would be 99% or 0.99, if we solve for p we got:



So then the value of the maximum I/O wait that can be tolerated is 0.720 or 72 %
The below code will help you to solve the given problem and you can execute and cross verify with sample input and output.
#include<stdio.h>
#include<string.h>
int* uniqueValue(int input1,int input2[])
{
int left, current;
static int arr[4] = {0};
int i = 0;
for(i=0;i<input1;i++)
{
current = input2[i];
left = 0;
if(current > 0)
left = arr[(current-1)];
if(left == 0 && arr[current] == 0)
{
arr[current] = input1-current;
}
else
{
for(int j=(i+1);j<input1;j++)
{
if(arr[j] == 0)
{
left = arr[(j-1)];
arr[j] = left - 1;
}
}
}
}
return arr;
}
Answer:
For 32 bits Instruction Format:
OPCODE DR SR1 SR2 Unused bits
a) Minimum number of bits required to represent the OPCODE = 3 bits
There are 8 opcodes. Patterns required for these opcodes must be unique. For this purpose, take log base 2 of 8 and then ceil the result.
Ceil (log2 (8)) = 3
b) Minimum number of bits For Destination Register(DR) = 4 bits
There are 10 registers. For unique register values take log base 2 of 10 and then ceil the value. 4 bits are required for each register. Hence, DR, SR1 and SR2 all require 12 bits in all.
Ceil (log2 (10)) = 4
c) Maximum number of UNUSED bits in Instruction encoding = 17 bits
Total number of bits used = bits used for registers + bits used for OPCODE
= 12 + 3 = 15
Total number of bits for instruction format = 32
Maximum No. of Unused bits = 32 – 15 = 17 bits
OPCODE DR SR1 SR2 Unused bits
3 bits 4 bits 4 bits 4 bits 17 bits