Answer:
where the point B lie ,first say point B where lie
Answer:
Part A: From 0 to 2 seconds, the height of the water balloon increases from 60 to 75 feet, therefore the water balloon's height is increasing during the interval [0,2]
Part B: From 2 to 4 seconds, the height of the water balloon stays the same at 75 feet, therefore the water balloon's height is the same during the interval [2,4] From 10 to 12 seconds, the height of the water balloon stays the same at 0 feet, therefore the water balloon's height is the same during the interval [10,12] From 12 to 14 seconds, the height of the water balloon stays the same at 0 feet, therefore the water balloon's height is the same during the interval [12,14]
Part C: The interval, [4,6] of the domain is when the water ballon's height decreases the fastest. The interval [4,6] decreases by 35 feet. The two other intervals that decrease are [6,8] and [8,10] which both have the same slope. They decrease by 20 feet. Therefore, this helps us conclude that the interval [4,6] decreases the fastest because 35 feet is a more significant decrease than 20 feet.
Part D: I predict that the height of the water balloon at 16 seconds is 0 feet. This is because at 10-14 seconds, the water balloon's height is 0 feet. In read-world situations, if the water balloon is on the ground which is 0 feet, it stays on the ground due to gravity.
Step-by-step explanation:
I hope this helps! I also do not know if it is all correct but I did research and everything so hopefully it is correct! Good luck!
Answer:
Step-by-step explanation:
Hello!
The variable of interest is
X: number of 18-20-year-olds that consume alcoholic beverages in a sample of 50.
The proportion of underage people that drinks are known to be p= 0.697
This variable is discrete. This experiment has two possible outcomes success or failure, we will call "success" each time we encounter an underage individual that consumes alcohol and "failure" will be counting an underage that does not consume alcohol. The number of repetitions of the trial is fixed n= 50. All randomly selected underage individuals are independent and the probability of success is constant trough the whole experiment p=0.697.
Then we can say that this variable has a binomial distribution and we will use that distribution to do the calculations.
a. Under a binomial distribution, the expected value is calculated as:
E(X)= n*p= 50*0.697= 34.85.
The variance of a binomial distribution is:
V(X)= n*p*(1-p)= 50*0.697*0.303= 10.55955
And the standard deviation is the square root of the variance:
√V(X)= 3.2495 ≅ 3.25
b. To know how rare the value 45, you have to see how distant it is concerning the expected value. For this you have to subtract the expected value and divide it by the standard deviation:
[X-E(X)]/√V(X)
(45-34.85)/3.25= 3.12
The value X=45 is 3.12 standard deviations above the mean, which means that it would be rare to find 45 people or more than consumed alcohol.
c. P(X≥45) = 1 - P(X<45)= 1 - P(X≤44)= 1 - 0.9994= 0.0006
I hope it helps!
Answer:
Jamie should have reversed the inequality when using the division property of inequality.
Step-by-step explanation:
Jamie wrote
500 − 30x ≥ 200
Subtract 500 from both sides
500-500-30x ≥ 200-500
-30x ≥ -300
Divide both sides by -30
x ≥ 10
Instead of reversing the inequality when using the division property of inequality
500 − 30x ≥ 200
Subtract 500 from both sides
500-500-30x ≥ 200-500
-30x ≥ -300
Divide both sides by -30
x <or= 10