12(6) + 12x = 144
72 + 12x = 144
12x = 144 - 72
12x = 72
x = 72/12
x = 6...she shoveled 6 more driveways on Sunday
The answer is true because if you multiply 3•(3) is will give you 9 and if you multiply 10•(3) it will give you 30 which gives you both of the sides for the larger one
Answer:
The value of q that maximize the profit is q=200 units
Step-by-step explanation:
we know that
The profit is equal to the revenue minus the cost
we have
---> the revenue
---> the cost
The profit P(q) is equal to

substitute the given values



This is a vertical parabola open downward (because the leading coefficient is negative)
The vertex represent a maximum
The x-coordinate of the vertex represent the value of q that maximize the profit
The y-coordinate of the vertex represent the maximum profit
using a graphing tool
Graph the quadratic equation
The vertex is the point (200,-120)
see the attached figure
therefore
The value of q that maximize the profit is q=200 units
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision
They are both correct in their computation
(28.5-28.5(.3))+.1(28.5-28.5(.3))=$21.945
28.5(.7)(1.1)=$21.945
And since they each have $22 to spend, they have enough to purchase the book.