Answer: The model is depicting the glacier erosion.
Explanation:
The glaciers are responsible for causing erosion of the earth. They transport the materials away from the locations were they are earlier situated. They carve the materials present beneath the land. They erode the materials like soil, pebbles, boulders, against the pressure of the unstable mass of the ice moving down the slope. The broken ice mass carriers away the broken rocks, materials and soil debris far away from the places where they have been originally situated. This causes the glacial erosion. Also the broken and displaced rocks displace the soil and other materials come in contact with during erosion.
According to the given situation, the ice formed with water only had no impact on the tinfoil on the other hand the ice containing the sand and rocks removed the tinfoil from places. This is because of the friction created by the sand and rocks on the tinfoil. The glacier material like ice, soil, rocks due to friction erode the material come in contact with it with an appreciable pressure underneath.
Answer:
The DNA strands are not free in the nucleus, but forming a compact structure called chromatin along special proteins, known as histones. The chromatin structure has an important role in gene expression, as the level of compaction and the histone modification act as signals for the transcription machinery
In order to be transcribed, different areas in the genome need to unfold from the histone proteins, so the RNA polymerase can access the DNA.
That means, <u>that DNA sequences that transcribe at high rate, are more often unfold from the histones, and more exposed to other proteins to bind them. Particularly, those areas are more sensitive to the attack of endonucleases, such as DNAse I.</u>
As a consequence, an assay of DNAse I digestion can be used to identify highly sensitive or resistant to DNAse cleavage areas in the genome, and therefore serve as an insight to which sequences are more and less transcriptionally active.
The correct answers are ATMOSPHERE and BIOSPHERE. Nitrogen is most abundant in the ATMOSPHERE, but nitrogen can't be absorbed by the BIOSPHERE without the help of a special bacteria and without undergoing a process called nitrogen fixation.
The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>