answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
2 years ago
14

How many kilograms of solvent (water) must 0.71 moles of KI be dissolved in to produce a 1.93 m solution?

Chemistry
1 answer:
GalinKa [24]2 years ago
6 0

Answer: kg= 0.37

Explanation:

Use the molality formula.

M= m/kg

You might be interested in
The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl),
skad [1K]
The following are the answers to the different questions: 
<span>The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?

A. 101.53° C

Which of the following solutions will have the lowest freezing point?

D. 1.0 mol/kg magnesium fluoride (MgF2)


Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?

A. sodium iodide (NaI)


Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?

B. 96.3 kPa



Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?

D. 108.1°C</span>
4 0
2 years ago
Read 2 more answers
The average density of a carbon-fiber-epoxy composite is 1.615 g/cm3. the density of the epoxy resin is 1.21 g/cm3 and that of t
ra1l [238]
The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.

Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³ 
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³ 

a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins

Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>

b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
     Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>
4 0
2 years ago
A 0.2-mm-thick wafer of silicon is treated so that a uniform concentration gradient of antimony is produced. One surface contain
krek1111 [17]

Answer:

- 0.0249% Sb/cm

-1.2465 * 10^9 \frac{atoms}{cm^3.cm}

Explanation:

Given that:

One surface contains 1 Sb atom per  10⁸  Si atoms and the other surface contains 500 Sb atoms per  10⁸ Si atoms.

The concentration gradient in atomic percent (%) Sb  per cm can be calculated as follows:

The difference in concentration = \delta_c

The distance \delta_x = 0.2-mm = 0.02 cm

Now, the concentration of silicon at one surface containing  1 Sb atom per 10⁸ silicon atoms and at the outer surface that has 500 Sb atom per   10⁸ silicon atoms can be calculated as follows:

\frac{\delta_c}{\delta_c} = \frac{(1/10^8 -500/10^8)}{0.02cm} *100%

= - 0.0249% Sb/cm

b) The concentration (c_1) of Sb in atom/cm³ for the surface of 1 Sb atoms can be calculated by using the formula:

c_1 = \frac{(8 si atoms/unit cells)(1/10^3)}{(lattice parameter)^3/unit cell}

Lattice parameter = 5.4307 Å;  To cm ; we have

= 5.4307A^0* \frac{10^{-8}cm}{ A^0}

c_1 = \frac{(8 si atoms/unit cells)(1/10^8)}{(5.4307*10^{-8}cm)^3/unit cell}

= 0.00499*10^{17}atoms/cm^3

The concentration (c_2) of Sb in atom/cm³ for the surface of 500 Sb can be calculated as follows:

c_1 = \frac{(8 si atoms/unit cells)(500/10^8)}{(5.4307*10^{-8}cm)^3/unit cell}

   =  \frac{4*10^{-3}}{1.601*10^{-22}}

   = 2.4938*10^{17}atoms/cm^3

Finally, to calculate the concentration gradient

(\frac{\delta _c}{\delta_ x}) = \frac{c_1-c_2}{\delta_x}

(\frac{\delta _c}{\delta_ x}) = \frac{0.00499*10^{17}-2.493*10^{17}}{0.02}

= -1.2465 * 10^9 \frac{atoms}{cm^3.cm}

8 0
2 years ago
Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen,
Sati [7]

Answer:

The answer is: Law of multiple proportions        

Explanation:

The law of multiple proportions is a law of chemical combination given by Dalton in 1803.

According to this law, if more than one chemical compound is formed by combining two elements, then the mass of an element that combines with the fixed mass of other element is represented in the form of small whole number ratio.

<u>Therefore, is an illustration of the law of the law of multiple proportions.</u>

8 0
2 years ago
Determine net ionic equations, if any, occuring when aqueous solutions of the following reactants are mixed. Select "True" or "F
nirvana33 [79]

<u>Answer:</u>

<u>For 1:</u> The correct answer is False.

<u>For 2:</u> The correct answer is True.

<u>For 3:</u> The correct answer is True.

<u>For 4:</u> The correct answer is False.

<u>For 5:</u> The correct answer is True.

<u>Explanation:</u>

Net ionic equation of any reaction does not include any spectator ions.  If no net ionic equation is formed, it is said that no reaction has occurred.

Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form. Solids, liquids and gases do not exist as ions.

  • <u>For 1:</u> Lead(II) nitrate and sodium chloride

The chemical equation for the reaction of lead (II) nitrate and sodium chloride is given as:

Pb(NO_3)_2(aq.)+2NaCl(aq.)\rightarrow PbCl_2(s)+2NaNO_3(aq.)

Ionic form of the above equation follows:

Pb^{2+}(aq.)+2NO_3^-(aq.)+2Na^+(aq.)+2Cl^-(aq.)\rightarrow PbCl_2(s)+2Na^+(aq.)+2NO_3^-(aq.)

As, sodium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.

The net ionic equation for the above reaction follows:

Pb^{2+}(aq.)+Cl^-(aq.)\rightarrow PbCl_2(s)

Hence, the correct answer is False.

  • <u>For 2:</u> Sodium bromide and hydrochloric acid

The chemical equation for the reaction of sodium bromide and hydrochloric acid is given as:

NaBr(aq.)+HCl(aq.)\rightarrow NaCl(aq.)+HBr(aq.)

Ionic form of the above equation follows:

Na^{+}(aq.)+Br^-(aq.)+H^+(aq.)+Cl^-(aq.)\rightarrow Na^+(aq.)+Cl^-(aq.)+H^+(aq.)+Br^-(aq.)

There are no spectator ions in the equation. So, the above reaction is the net ionic equation.

Hence, the correct answer is True.

  • <u>For 3:</u> Nickel (II) chloride and lead(II) nitrate

The chemical equation for the reaction of lead (II) nitrate and nickel (II) chloride is given as:

Pb(NO_3)_2(aq.)+NiCl_2(aq.)\rightarrow PbCl_2(s)+Ni(NO_3)_2(aq.)

Ionic form of the above equation follows:

Pb^{2+}(aq.)+2NO_3^-(aq.)+Ni^{2+}(aq.)+2Cl^-(aq.)\rightarrow PbCl_2(s)+Ni^{2+}(aq.)+2NO_3^-(aq.)

As, nickel and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.

The net ionic equation for the above reaction follows:

Pb^{2+}(aq.)+Cl^-(aq.)\rightarrow PbCl_2(s)

Hence, the correct answer is True.

  • <u>For 4:</u> Magnesium chloride and sodium hydroxide

The chemical equation for the reaction of magnesium chloride and sodium hydroxide is given as:

MgCl_2(aq.)+2NaOH(aq.)\rightarrow Mg(OH)_2(s)+2NaCl(aq.)

Ionic form of the above equation follows:

Mg^{2+}(aq.)+2Cl^-(aq.)+2Na^+(aq.)+2OH^-(aq.)\rightarrow Mg(OH)_2(s)+2Na^+(aq.)+2Cl^-(aq.)

As, sodium and chloride ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.

The net ionic equation for the above reaction follows:

Mg^{2+}(aq.)+OH^-(aq.)\rightarrow Mg(OH)_2(s)

Hence, the correct answer is False.

  • <u>For 5:</u> Ammonium sulfate and barium nitrate

The chemical equation for the reaction of ammonium sulfate and barium nitrate is given as:

(NH_4)_2SO_4(aq.)+Ba(NO_3)_2(aq.)\rightarrow BaSO_4(s)+2NH_4NO_3(aq.)

Ionic form of the above equation follows:

2NH_4^{+}(aq.)+SO_4^{2-}(aq.)+Ba^{2+}(aq.)+2NO_3^-(aq.)\rightarrow BaSO_4(s)+2NH_4^+(aq.)+2NO_3^-(aq.)

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.

The net ionic equation for the above reaction follows:

Ba^{2+}(aq.)+SO_4^{2-}(aq.)\rightarrow BaSO_4(s)

Hence, the correct answer is True.

3 0
2 years ago
Other questions:
  • 1 mole of ch3oh(l) has a greater entropy than 1 mole of c2h5oh(l). true or false
    12·1 answer
  • How many moles of ions are in 285 ml of 0.0150 m mgcl2?
    10·2 answers
  • What is the pH of a solution prepared by mixing 50.00 mL of 0.10 M methylamine, CH3NH2, with 20.00 mL of 0.10 M methylammonium c
    6·1 answer
  • After a reaction, a new compound contains 0.73 g Mg and 0.28 g N. What is the empirical formula of this compound?
    12·1 answer
  • Given the following reactions Fe2O3 (s) + 3CO (s) → 2Fe (s) + 3CO2 (g) ΔH = -28.0 kJ 3Fe (s) + 4CO2(s) → 4CO (g) + Fe3O4(s) ΔH =
    12·1 answer
  • A titration is performed to determine the amount of sulfuric acid, H2SO4, in a 6.5 mL sample taken from car battery. About 50 mL
    10·1 answer
  • Hydrogen peroxide, H2O2, is common in many households and is used as a bleaching agent. It usually comes in a dark, opaque bottl
    5·1 answer
  • A solution of sodium hydroxide was titrated against a solution of sulfuric acid. How many moles of sodium hydroxide would react
    15·1 answer
  • 6. Cross-cuts are best made with which of the following types of knife? A. Utility knife B. Scaler C. Paring knife D. Chef's kni
    13·2 answers
  • Carbon monoxide and molecular oxygen react to form carbon dioxide. A 50.0 L reactor at 25.0 oC is charged with 1.00 bar of CO. T
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!