we know that
For a polynomial, if
x=a is a zero of the function, then
(x−a) is a factor of the function. The term multiplicity, refers to the number of times that its associated factor appears in the polynomial.
So
In this problem
If the cubic polynomial function has zeroes at 2, 3, and 5
then
the factors are

Part a) Can any of the roots have multiplicity?
The answer is No
If a cubic polynomial function has three different zeroes
then
the multiplicity of each factor is one
For instance, the cubic polynomial function has the zeroes

each occurring once.
Part b) How can you find a function that has these roots?
To find the cubic polynomial function multiply the factors and equate to zero
so

therefore
the answer Part b) is
the cubic polynomial function is equal to

C. eight or fewer
99% means 99/100
. with 9 alarms there is no way you can trigger 8 alarms with that 99% rate
20 crunchy munchy=2.50 this means 2.50/20=0.125 cents per candy (i assume is candy)
40 crunchy munchy=4.00 4/40=0.100 cents per candy - this is cheaper than previous one
1 quart of milk =1.50 dollars
you cant actuality compare candy to milk
<span>The discriminant of a quadratic equation is the b^2-4ac portion that the square root is taken of. If the discriminant is negative, then the function has 2 imaginary roots, if the discriminant is equal to 0, then the function has only 1 real root, and finally, if the discriminant is greater than 0, the function has 2 real roots. So let's look at the equations and see which have a positive discriminant.
f(x) = x^2 + 6x + 8
6^2 - 4*1*8
36 - 32 = 4
Positive, so f(x) has 2 real roots.
g(x) = x^2 + 4x + 8
4^2 - 4*1*8
16 - 32 = -16
Negative, so g(x) does not have any real roots
h(x) = x^2 – 12x + 32
-12^2 - 4*1*32
144 - 128 = 16
Positive, so h(x) has 2 real roots.
k(x) = x^2 + 4x – 1
4^2 - 4*1*(-1)
16 - (-4) = 20
Positive, so k(x) has 2 real roots.
p(x) = 5x^2 + 5x + 4
5^2 - 4*5*4
25 - 80 = -55
Negative, so p(x) does not have any real roots
t(x) = x^2 – 2x – 15
-2^2 - 4*1*(-15)
4 - (-60) = 64
Positive, so t(x) has 2 real roots.</span>