Let the distance of the first part of the race be x, and that of the second part, 15 - x, then
x/8 + (15 - x)/20 = 1.125
5x + 2(15 - x) = 40 x 1.125
5x + 30 - 2x = 45
3x = 45 - 30 = 15
x = 15/3 = 5
Therefore, the distance of the first part of the race is 5 miles and the time is 5/8 = 0.625 hours or 37.5 minutes
The distance of the second part of the race is 15 - 5 = 10 miles and the time is 1.125 - 0.625 = 0.5 hours or 30 minutes.
4.509 is greater that 4.508 and less than 4.512
10 times 7 is 70.
So, it is 70 thousands.
Or in other words, seven ten-thousands.
or just write it normally: 10*7*1000=70000=seventy thousand
Wee!
Answer:
99.85%
Step-by-step explanation:
The lifespans of meerkats in a particular zoo are normally distributed. The average meerkat lives 10.4 years; the standard deviation is 1.9 years.
Use the empirical rule (68-95-99.7%) to estimate the probability of a meerkat living less than 16.1 years.
Solution:
The empirical rule states that for a normal distribution most of the data fall within three standard deviations (σ) of the mean (µ). That is 68% of the data falls within the first standard deviation (µ ± σ), 95% falls within the first two standard deviations (µ ± 2σ), and 99.7% falls within the first three standard deviations (µ ± 3σ).
Therefore:
68% falls within (10.4 ± 1.9). 68% falls within 8.5 years to 12.3 years
95% falls within (10.4 ± 2*1.9). 95% falls within 6.6 years to 14.2 years
99.7% falls within (10.4 ± 3*1.9). 68% falls within 4.7 years to 16.1 years
Probability of a meerkat living less than 16.1 years = 100% - (100% - 99.7%)/2 = 100% - 0.15% = 99.85%
Answer:
An equilateral triangle
Step-by-step explanation:
Because an equilateral has a feature that all sides have the same length and all angles are of the same, it does not matter from which side and peak the centroid, circumcenter, incenter and orthocenter is created, they would always end up at the same point.