Answer:
Cost of equity = 11.20%, Value of Equity = $39.25
Explanation:
a. Cost of equity = Rf + B(Rm-Rf)
Cost of equity = 4% + 1.2(6%)
Cost of equity = 4% + 7.20%
Cost of equity = 11.20%
b. P/E ratio = 20
Market Price / EPS = 20
Market Price = EPS * 20
-->P1 = $2.17 * 20 = $43.40
DPS1= $0.24
Value of Equity = P1/Cost of Equity + DPS1/Cost of equity
Value of Equity = $43.40/1.1120 + $0.24/1.1120
Value of Equity = $39.03 + $0.22
Value of Equity = $39.25
Answer:
812.40 units
Explanation:
Given that,
Annual holding cost percentage = 20%
Ordering cost = $110 per order
Annual demand = 15,000 units
Units Ordered - Price Per Unit
1-250 - $30.00
251-500 - $28.00
501-750 - $26.00
751 and up - $25.00
Optimal order quantity:
= 
= 
= 
= 812.40
Therefore, the optimal order quantity is 812.40 units.
Answer and Explanation:
According to the scenario, computation of the given data are as follow:-
Price ceiling:-This is show the limit of the price on maximizing value of the product which is decided by government and his imposed group for customer.
Binding:-The binding price ceiling is below the equilibrium price.
Unbinding:-The unbinding price ceiling is above equilibrium price.
Price floor:-This is show the limit of the price on lower value of the product which is decided by government and his imposed group for customer. A price floor must be higher than the price equilibrium price in order to be effective.
Binding:-The binding price floor is above the equilibrium price.
Unbinding:-The unbinding price floor is below the equilibrium price.
It is given that the equilibrium price of milk is $2.50 per gallon.
Statement 1:-This is the example of price floor and binding because minimum price of $2.30 per gallon is decided.
Statement 2:-This is the example of price floor and binding because minimum price of $3.40 per gallon is decided for gasoline.
Statement 3:-This is the example of price floor and binding because teenagers are not hired due to minimum-wage laws.
Answer:
Explanation:
Present value of annuity due = (1+interest rate)*Annuity[1-(1+interest rate)^ -time period]/rate
=(1+0.075)*25000*[1-(1.075)^-15]/0.075
=$25000*9.489153726
=$237,228.84
12000*12= 14400 for a year