At point A, the reading on the altimeter is 450; at point B, it's negative 50. Was there a typo here? It's not clear what the question is.
Answer:
edge 2020
Step-by-step explanation:
The data appears slightly skewed, so the median is probably the most appropriate measure.
My friend has a good chance of making between $16,000 and $23,000 because that is the range for the middle 50% of employees.
Answer:
0.34134
Step-by-step explanation:
In other to solve for this question, we would be using the z score formula
z = (x - μ) / σ
x = raw score
μ = mean
σ = Standard deviation
We are told in the question to find the probability that a worker selected at random makes between $350 and $400
let x1 = 350 and x2= 400 with the mean μ = 400 and standard deviation σ = $50.
z1 = (x1 - μ) / σ = (350-400) / 50 = -1
z2 = (x2 - μ) / σ = (400 - 400) / 50 = (0/50) = 0
From tables, P(z <= -1) = 0.15866
P(z <= 0) = 0.5
Then, the probability would give us, P(-1 ≤ z ≤ 0) =0.5 - 0.15866 =
0.34134
Hence, The probability that a worker selected at random makes between $350 and $400 = 0.34134