Answer:
Step-by-step explanation:
Given the functions z=(x+y) and x=u²+v² and y=u²−v²
Using the composite derivative formula;
∂z/∂u= ∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u
∂z/∂u = y*2u + [(x+y)+x]*2u
∂z/∂u =y*2u + 2u[x+y+x]
∂z/∂u = y*2u + 2u[2x+y]
<em>∂z/∂u = 2u[u²−v²]</em><em>+ 2u[2(u²+v²)</em><em>+y</em><em>]]</em>
∂z/∂v= ∂z/∂x*∂x/∂v+∂z/∂y*∂y/∂v
∂z/∂v = y*2v + [(x+y)+x]*-2v
∂z/∂v =y*2v -2v[x+y+x]
∂z/∂v = y*2v -2v[2x+y]
<em>∂z/∂v = 2v[u²−v²]</em><em>-2v[2(u²+v²)</em><em>+y</em><em>]</em>
53191.8367347
thx for the points
0.75
P(A | B) = P(A and B) / P(B)
P(vanilla | sundae) = P(vanilla and sundae) / P(sundae)
P(vanilla | sundae) = 0.15 / 0.2
P(vanilla | sundae) = 0.75
Answer: jeff
Step-by-step explanation:bill
AD*EB=CE*DB because cross multiplication