Conditional probability is a measure of the probability of an event given that another event has occurred. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B), or sometimes

.
The conditional probability of event A happening, given that event B has happened, written as P(A|B) is given by

In the question, we were told that there are three randomly selected coins which can be a nickel, a dime or a quarter.
The probability of selecting one coin is

Part A:
To find <span>the probability that all three coins are quarters if the first two envelopes Jeanne opens each contain a quarter, let the event that all three coins are quarters be A and the event that the first two envelopes Jeanne opens each contain a quarter be B.
P(A) means that the first envelope contains a quarter AND the second envelope contains a quarter AND the third envelope contains a quarter.
Thus

</span><span>P(B) means that the first envelope contains a quarter AND the
second envelope contains a quarter
</span><span>Thus

Therefore,

Part B:
</span>To find the probability that all three coins are different if the first envelope Jeanne opens contains a dime<span>, let the event that all three coins are different be C and the event that the first envelope Jeanne opens contains a dime be D.
</span><span>

</span><span>

</span><span>
Therefore,

</span>
Percent increase is:
Change/original * 100
(29975-24400)/24400
5575/24400= .228 * 100=
22.8%
Answer:
y = 16x/65
Step-by-step explanation:
Given:
Triangle ABE is similar to triangle ACD. AED and ABC are straight lines
EB and DC are parallel
The area of quadrilateral BCDE = xcm²
The area of triangle ABE = ycm²
Find attached the diagram from the above information.
In similar triangles, the ratio of their corresponding angles are equal.
Also, the ratio of the area of the two triangles = square of ratio of the corresponding sides of the two triangles.
Area ∆ACD/area of ∆ABE = (DC/EB)²
Area ∆ACD/area of ∆ABE = [(area of quadrilateral BCDE +
area of ∆ABE)]/(area of ∆ABE)
(x+y)/y = (DC/EB)²
(x+y)/y = (9/4)²
x+y = (81/16)y
x = (81/16)y - y
x = (81y - 16y)/16
x = 65y/16
Making y subject of formula
16x = 65y
y = 16x/65
An expression for y in terms of x:
y = 16x/65
We know that
<span>A number x, rounded to 1 decimal place is 12.3
</span><span>so
x>=12.25
and
x < 12.35
</span><span>the error interval for x is the interval [12.25,12.35)
</span>
the answer is
[12.25,12.35)
Answer:
Sofia is correct.
Step-by-step explanation:
Mark's statement depends on the starting point. He can be correct if they started at the 0 mile, but in this case we don't know where they started. They could had started at the 12 mile and their current position after the walking would be 16 miles.
On the other hand, Sofia's statement doesn't depend on where they started. She refers to how much they walked, not to where they are after the walking. Since they stopped after 4 non-stopping miles, their displacement was exactly 4 miles. So Sofia is correct.