8m(4+7p). (The greatest common factor is 8.).
From the graph it appears that S′(5) 2 ≈ and S′(25) 2 ≈ − . The important
thing is that they do have opposite signs. The first means that at about 5ºC
the Coho gains about 2 cm/sec while at 25ºC it loses about 2 cm/sec in
maximum sustainable speed.
1. It is the subset of a group - Group sample.
2. It equally favors all members of a group sample
- Random sample.
3. It collects data on members of a group - Survey.
4. It does not equally favor all members of a group - Biased sample.
5. It includes all members of a group
- Population.
6. It analyzes data collected from a group - Mean.
I have matched all concepts in accordance with statistical use, hope it helps.
System 1: The solution is (x, y) = (-4, 5)
System 2: The solution is 
<em><u>Solution:</u></em>
<em><u>Given system of equations are:</u></em>
2x + 3y = 7 ------ eqn 1
-3x - 5y = -13 --------- eqn 2
We can solve by elimination method
Multiply eqn 1 by 3
6x + 9y = 21 ------ eqn 3
Multiply eqn 2 by 2
-6x - 10y = -26 ------- eqn 4
Add eqn 3 and eqn 4
6x + 9y -6x - 10y = 21 - 26
-y = -5
y = 5
Substitute y = 5 in eqn 1
2x + 3(5) = 7
2x + 15 = 7
2x = -8
x = -4
Thus the solution is (x, y) = (-4, 5)
<h3><em><u>
Second system of equation is:</u></em></h3>
8 - y = 3x ------ eqn 1
2y + 3x = 5 ----- eqn 2
We can solve by susbtitution method
From given,
y = 8 - 3x ----- eqn 3
Substitute eqn 3 in eqn 2
2(8 - 3x) + 3x = 5
16 - 6x + 3x = 5
3x = 16 - 5
3x = 11

Substitute the above value of x in eqn 3
y = 8 - 3x

Thus the solution is 
Since the area of a square is equal to the square of one of its side's length, then the area should be equivalent to

.

---> equation (1)
By using pythagoras rule which states that the

---> equation (2)
where the opposite side's length is 8 and the hypotenuse side's length is 10
by substituting by the values in equation (2) therefore,

substitute this value in equation (1) then

where A is the area of the square whose side is x