Answer:
a) 375
b) 7062.75 mm²
Step-by-step explanation:
b) We need to find the shortest possible width and length to get the smallest possible area.
To get the boundaries for 19.4, we go on to the next significant figure (the hundredths) and ± 5 of them.
The boundaries are, therefore: 19.35 - 19.45
As for the length, we can see they've added 5 units as the measurement is correct to 2 sig' figures, which is the tens.
And so, if we do as we did before, we go to the next sig' figure (the units) and ± 5 of them, we get the boundaries to be 365 - 375.
Now, we just multiply the lower bounds of the length and width to get the minimal/lower-bound area:
365 * 19.35 = 7062.75 mm²
Answer:
72.5
Step-by-step explanation:
one block = 43.5 / 3 = 14.5
five blocks = 5 * 14.5 = 72.5 (ans)
A score of 85 would be 1 standard deviation from the mean, 74. Using the 68-95-99.7 rule, we know that 68% of normally distributed data falls within 1 standard deviation of the mean. This means that 100%-68% = 32% of the data is either higher or lower. 32/2 = 16% of the data will be higher than 1 standard deviation from the mean and 16% of the data will be lower than 1 standard deviation from the mean. This means that 16% of the graduating seniors should have a score above 85%.
Answer: he’s facing south now
Step-by-step explanation: started in east then turned south then west then back to south
General Idea:
When a point or figure on a coordinate plane is moved by sliding it to the right or left or up or down, the movement is called a translation.
Say a point P(x, y) moves up or down ' k ' units, then we can represent that transformation by adding or subtracting respectively 'k' unit to the y-coordinate of the point P.
In the same way if P(x, y) moves right or left ' h ' units, then we can represent that transformation by adding or subtracting respectively 'h' units to the x-coordinate.
P(x, y) becomes
. We need to use ' + ' sign for 'up' or 'right' translation and use ' - ' sign for ' down' or 'left' translation.
Applying the concept:
The point A of Pre-image is (0, 0). And the point A' of image after translation is (5, 2). We can notice that all the points from the pre-image moves 'UP' 2 units and 'RIGHT' 5 units.
Conclusion:
The transformation that maps ABCD onto its image is translation given by (x + 5, y + 2),
In other words, we can say ABCD is translated 5 units RIGHT and 2 units UP to get to A'B'C'D'.