answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
2 years ago
11

Se encontro que la arista de un cubo es de 30cm, con un posible error en la medicion de 0.1. Utilice diferenciales para estimar

el error maximo posible, el error relativo y el porcentaje de error al calcular a) el volumen del cubo b) el area superficial del cubo
Mathematics
1 answer:
Ierofanga [76]2 years ago
6 0

Answer:

a) El error máximo posible es 270 centímetros cúbicos. El error relativo asociado al volumen es 0.01. El error asociado al volumen es 1 por ciento.

b) El máximo error posible del área superficial es 36 centímetros cuadrados. El máximo error posible del área superficial es 36 centímetros cuadrados. El porcentaje de error del área superficial es 0.667 por ciento.

Step-by-step explanation:

Recordemos que el volumen y el área superficial de un cubo quedan representados por las respectivas fórmulas:

V = l^{3} (Ec. 1)

A_{s} = 6\cdot l^{2} (Ec. 2)

Donde:

l - Longitud de la arista, medida en centímetros.

A_{s} - Área superficial, medida en centrímetros cuadrados.

V - Volumen, medido en centímetros cúbicos.

a) El error máximo posible del volumen del cubo se estima por el siguiente diferencial:

\Delta V = \frac{\partial V}{\partial l}\cdot \Delta l (Ec. 3)

Donde:

\Delta V - Error máximo posible del volumen, medido en centímetros cúbicos.

\frac{\partial V}{\partial l} - Primera derivada parcial del volumen con respecto a la longitud de la arista, medida en centrímetros cuadrados.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de volumen es:

\frac{\partial V}{\partial l} = 3\cdot l^{2} (Ec. 4)

Ahora expandimos (Ec. 3):

\Delta V = 3\cdot l^{2}\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del volumen es:

\Delta V = 3\cdot (30\,cm)^{2}\cdot (0.1\,cm)

\Delta V = 270\,cm^{3}

El error máximo posible del volumen es 270 centímetros cúbicos.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{V} = \frac{\Delta V}{V} (Ec. 5)

El volumen del cubo es: (l = 30\,cm)

V = (30\,cm)^{3}

V = 27000\,cm^{3}

Ahora sustituimos (Ec. 5):

\epsilon_{V} = \frac{270\,cm^{3}}{27000\,cm^{3}}

\epsilon_{V} = 0.01

El error relativo asociado al volumen es 0.01.

Por último, encontramos el porcentaje de error asociado al volumen:

\%\epsilon_{V} = 0.01\times 100\,\%

\%\epsilon_{V} = 1\,\%

El error asociado al volumen es 1 por ciento.

b) El error máximo posible del área superficial del cubo se estima por el siguiente diferencial:

\Delta A_{s} = \frac{\partial A_{s}}{\partial l}\cdot \Delta l (Ec. 6)

Donde:

\Delta A_{s} - Error máximo posible del área superficial, medido en centímetros cuadrados.

\frac{\partial A_{s}}{\partial l} - Primera derivada parcial del área superficial con respecto a la longitud de la arista, medida en centrímetros.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de área superficial es:

\frac{\partial A_{s}}{\partial l} = 12\cdot l (Ec. 7)

Ahora expandimos (Ec. 6):

\Delta A_{s} = 12\cdot l\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del área superficial es:

\Delta A_{S} = 12\cdot (30\,cm)\cdot (0.1\,cm)

\Delta A_{S} = 36\,cm^{2}

El máximo error posible del área superficial es 36 centímetros cuadrados.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{A_{S}} = \frac{\Delta A_{S}}{A_{S}} (Ec. 8)

El área superficial del cubo es: (l = 30\,cm)

A_{S} = 6\cdot (30\,cm)^{2}

A_{S} = 5400\,cm^{2}

Ahora sustituimos (Ec. 8):

\epsilon_{A_{S}} = \frac{36\,cm^{2}}{5400\,cm^{2}}

\epsilon_{A_{S}} = 6.667\times 10^{-3}

El error relativo del área superficial es 6.667 × 10⁻³.

Por último, encontramos el porcentaje de error asociado al área superficial:

\%\epsilon_{A_{S}} = 6.667\times 10^{-3}\times 100\,\%

\%\epsilon_{A_{S}} = 0.667\,\%

El porcentaje de error del área superficial es 0.667 por ciento.

You might be interested in
A person riding a circular Ferris wheel sits 65 feet from the center. If they travel a distance of 92 feet during an initial rot
Temka [501]
We know that
the radius is 65 ft
circumference of a circle=2*pi*r
for r=65 ft
circumference of a circle=2*pi*65-----> 130*pi ft

if 2*pi  (full circle)  has a length of----------------> 130*pi ft
 x------------------------------------------> 92 ft
x=92*2*pi/(130*pi)----------> x=1.4154 radians-------> x=1.42 radians

the answer is
1.42 radians


8 0
2 years ago
The stem-and-leaf plot shows the temperatures of patients who registered at a clinic one day. How many patients registered at th
saveliy_v [14]

As the key suggests, the left part is the integer part of the number, while the digit on the right is the decimal part of the number.

So, for example, the first row describes the two values 97.2 and 97.8, while the second row describes the values 98.1, 98.3 (repeated twice), 98.5, 98.6 and 98.7 (repeater three times).

So, the number of values is given by the number of leaves: you simply have to count how many digits are there on the right part of the screen.

The answer is thus 24

5 0
2 years ago
a ball is thrown straight up from the top of a tower that is 280 ft high with an initial velocity of 48 ft/s . the height of the
poizon [28]
First find the time that the ball is level with the top of the building on its descent. You can do this by  solving 280 = -16^2 + 48t + 280 for t. This gives t = 3 seconds . 
Then when the ball reaches the ground the  time t is obtained by solving 0 = -16t^2 + 48t + 280  This gives t = 5.94 seconds.
Answer in interval notation is  (3, 5.94].
3 0
2 years ago
Read 2 more answers
Haley pays a monthly fee of $20 for her cell phone and then pays 5 cents per minute used. The cost of Haley’s cell phone bill ca
Svet_ta [14]
The domain is
{x | x >=0}
Or simply [0, infinity)
Since Haley can not use any negative minutes.

The range is
{y | y >=20}
Or simply [20, infinity)
This is because if Haley doesn't use any minutes, the price will stay at $20.
Let me know if you have any questions.
3 0
2 years ago
Read 2 more answers
In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly d
____ [38]

Complete question is;

In a certain community, 8% of all people above 50 years of age have diabetes. A health service in this community correctly diagnoses 95% of all person with diabetes as having the disease, and incorrectly diagnoses 10% of all person without diabetes as having the disease. Find the probability that a person randomly selected from among all people of age above 50 and diagnosed by the health service as having diabetes actually has the disease.

Answer:

P(has diabetes | positive) = 0.442

Step-by-step explanation:

Probability of having diabetes and being positive is;

P(positive & has diabetes) = P(has diabetes) × P(positive | has diabetes)

We are told 8% or 0.08 have diabetes and there's a correct diagnosis of 95% of all the persons with diabetes having the disease.

Thus;

P(positive & has diabetes) = 0.08 × 0.95 = 0.076

P(negative & has diabetes) = P(has diabetes) × (1 –P(positive | has diabetes)) = 0.08 × (1 - 0.95)

P(negative & has diabetes) = 0.004

P(positive & no diabetes) = P(no diabetes) × P(positive | no diabetes)

We are told that there is an incorrect diagnoses of 10% of all persons without diabetes as having the disease

Thus;

P(positive & no diabetes) = 0.92 × 0.1 = 0.092

P(negative &no diabetes) =P(no diabetes) × (1 –P(positive | no diabetes)) = 0.92 × (1 - 0.1)

P(negative &no diabetes) = 0.828

Probability that a person selected having diabetes actually has the disease is;

P(has diabetes | positive) =P(positive & has diabetes) / P(positive)

P(positive) = 0.08 + P(positive & no diabetes)

P(positive) = 0.08 + 0.092 = 0.172

P(has diabetes | positive) = 0.076/0.172 = 0.442

8 0
2 years ago
Other questions:
  • it is sixty-eight kilometres between venice and vicenza. every day the train does the journey four times. how far does the train
    13·1 answer
  • A 42 -ounce bottle of shampoo costs $2.52. Find the unit price
    15·1 answer
  • You put some money in a bank account one year ago. you have not done anything with it since. the bank takes out a low balance fe
    15·1 answer
  • When finding the slope of the trend line, what does the slope mean about the data of the scatterplot? Explain.
    14·2 answers
  • **WARNING** IF YOU ANSWER THIS QUESTION INCORRECTLY OR TRY TO ANSWER WITH FOOLISHNESS YOU WILL GET REPORTED
    15·1 answer
  • Ava flipped a coin 2 times. What are all the possible outcomes in the sample space? Let T represent the coin landing tails up an
    13·2 answers
  • The sum of three consecutive integers is -369
    9·2 answers
  • You have a friend who claims to psychic. You don't believe this so you test your friend by flipping a coin 20 times and having h
    15·1 answer
  • Which statement correctly explains how kasi could find a solution to the following system of linear equations using elimination
    14·2 answers
  • Shelley's pet food store sold one customer 5 peanut butter biscuits for $3. She sold another customer 7 beef treats for $4.20. W
    11·3 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!