Answer:
High-energy phosphorylated intermediates that serve as phosphate donors to ADP are generated as a result of electron-transfer reactions.
Explanation:
Peter Mitchell proposed Chemiosmotic hypothesis which state that the driving of the synthesis of ATP is accomplished by a proton-motive force. He propose that whenever electron is moved along the electron transfer chain then proton will be moved accross the inner part of mitochondria membrane. As a result of this there would be increase in PH of the mitochondria matrix and reduced PH of the intermembrane space.
Some Evidence about Chemiosmotic hypothesis hypothesis;
1)transportation of electron brings about the generatation of a proton gradient. there is difference in the PH on the outside and inside the mitochondria.
2)To synthesis ATP, a proton gradient is required only and other means by which PH gradient is generated
Therefore,High-energy phosphorylated intermediates that serve as phosphate donors to ADP are generated as a result of electron-transfer reactions is not Micheal Mitchell statement.
What are the options on it? I could help
Answer:
a. DNA polymerase proofreading: consequence of its absence is the DNA mutation
b. Mismatch repair enzymes
: consequence of its absence impedes homologous recombination resulting in the final mutation
c. Nucleotide excision repair enzymes
: the absence of nucleotide cleavage repair enzymes would impede the functioning of damaged DNA repair mechanisms
Explanation:
a. DNA polymerases are the enzymes that form the DNA in cells. During DNA replication (copying), most DNA polymerases can "check their work" with each base they add. This process is called review. If the polymerase detects that you have added a wrong nucleotide (incorrectly paired), remove it and replace it immediately, before continuing with DNA synthesis
b. In homologous recombination, the information from the homologous chromosome that matches that of the damaged one (or from a sister chromatid if the DNA has been copied) is used to repair the fragmentation. In this process the two homologous chromosomes are approached and the undamaged region of the homologue or the chromatide is used as a template to replace the damaged region of the broken chromosome. Homologous recombination is "cleaner" than the union of non-homologous ends and does not usually cause 11 mutations
c. Excision repair: damage to one or a few DNA bases is usually fixed by removing (excising) and replacing the damaged region. In repair by base cleavage, only the damaged base is removed. In nucleotide excision repair, as in the mating repair we saw earlier, a nucleotide section is removed