Simplifying the given expressions we proceed as follows:
(5sqrt3)^x
=5^x*(3^1/2)^x
=5^x*3^x/2
=5^x3^u
where u=x/2
(1/2)^(x-3)
=1/2^(x-3)
=2^-(3-x)
=2^u
where u=-(3-x)
9/3sqrt(3)
=3/(3)^(1/2)
=3(3)^(-1/2)
16/(3sqrt (2^x))
=1/3*(2^4*2^(-x/2))
=1/3*2^(4-x/2)
=1/3*2^u
where:
u=4-x/2
Answer:

Step-by-step explanation:
Consider the given matrix
![A=\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D)
Let matrix B is
![B=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
It is given that

![\left[\begin{array}{ccc}9&-2&3\\2&17&0\\3&22&8\end{array}\right]=\left[\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-2%263%5C%5C2%2617%260%5C%5C3%2622%268%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Db_%7B11%7D%26b_%7B12%7D%26b_%7B13%7D%5C%5Cb_%7B21%7D%26b_%7B22%7D%26b_%7B23%7D%5C%5Cb_%7B31%7D%26b_%7B32%7D%26b_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
On comparing corresponding elements of both matrices, we get



Therefore, the required values are
.
To answer the question above, we are simply to subtract the length of the gold ribbon which is 2 4/6 ft from the length of the silver ribbon, 5 2/6 feet. Mathematically,
5 2/6 feet - 2 4/6 feet = 8/3 feet
Therefore, Gina has 8/3 feet more of the silver ribbon than the golden ribbon.
No, just because the phones produced Increases it doesn’t mean that the work rate will get up to 100%. There can always be more workers.