The function given is a quadratic function, so the graph will be a parabola. It'll look similar to the photo attached. The minimum cost will be at the vertex of the parabola because that is its lowest point! To find the x-value of the vertex (which is what the question is looking for), use the vertex formula: x = -b/2a. The variable b is the coefficient of the x term in the function, and the variable a is the coefficient of the x² term. In this case, a = 0.125 and b = -5.
x = -(-5)/2(0.125)
x = 5/0.25
x = 20
So, 20 gas grills should be produced each day to maintain minimum costs. Hope that helps! :)
Answer:
9 minutes
Step-by-step explanation:
45/5 equals 9
Answer:
a)0.099834
b) 0
Step-by-step explanation:
To solve for this question we would be using , z.score formula.
The formula for calculating a z-score is is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.
A candy maker produces mints that have a label weight of 20.4 grams. Assume that the distribution of the weights of these mints is normal with mean 21.37 and variance 0.16.
a) Find the probability that the weight of a single mint selected at random from the production line is less than 20.857 grams.
Standard Deviation = √variance
= √0.16 = 0.4
Standard deviation = 0.4
Mean = 21.37
x = 20.857
z = (x-μ)/σ
z = 20.857 - 21.37/0.4
z = -1.2825
P-value from Z-Table:
P(x<20.857) = 0.099834
b) During a shift, a sample of 100 mints is selected at random and weighed. Approximate the probability that in the selected sample there are at most 5 mints that weigh less than 20.857 grams.
z score formula used = (x-μ)/σ/√n
x = 20.857
Standard deviation = 0.4
Mean = 21.37
n = 100
z = 20.857 - 21.37/0.4/√100
= 20.857 - 21.37/ 0.4/10
= 20.857 - 21.37/ 0.04
= -12.825
P-value from Z-Table:
P(x<20.857) = 0
c) Find the approximate probability that the sample mean of the 100 mints selected is greater than 21.31 and less than 21.39.
Answer:
A and E
Step-by-step explanation:
Death Valley and Alaska
73+42=115
134+15=149
Answer:
1/3
Step-by-step explanation:
Of the numbers between 1 and 12, the numbers that are multiples of 4 or 6 are: 4, 6, 8, 12.
So the probability is 4/12, or 1/3.