Answer:
114.32195122 but Round your answer to three significant figures.) is 114
Explanation:
Just took the test
Answer:
House A requires heat at a slightest faster rate than B
Explanation:
House A requires heat at a slightest faster rate than B due to the slight high temperature the furnace A is.
Answer:
F = 69.3 N
Explanation:
For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by
fr = μ N
We define a reference system parallel to the floor
block B ( lower)
Y axis
N - W₁-W₂ = 0
N = W₂ + W₂
N = (M + m) g
X axis
F -fr = M a
for block A (upper)
X axis
fr = m a (2)
so that the blocks do not slide, the acceleration in both must be the same.
Let's solve the system by adding the two equations
F = (M + m) a (3)
a =
the friction force has the formula
fr = μ N
fr = μ (M + m) g
let's calculate
fr = 0.34 (2.0 + 0.250) 9.8
fr = 7.7 N
we substitute in equation 2
fr = m a
a = fr / m
a = 7.7 / 0.250
a = 30.8 m / s²
we substitute in equation 3
F = (2.0 + 0.250) 30.8
F = 69.3 N
Answer:
The net torque is 0.0372 N m.
Explanation:
A rotational body with constant angular acceleration satisfies the kinematic equation:
(1)
with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

The negative sign indicates the sphere is slowing down as we expected.
Now with the angular acceleration we can use Newton's second law:
(2)
with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:
With M the mass of the sphere an R its radius, then:

Then (2) is:
