answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
2 years ago
14

Sixty identical drippers, each with a hole of diameter 1.00 mm, are used to water a yard. If the water in the main pipe of diame

ter 2.54 cm is flowing at speed 3.00 cm/s, (a) how much water is used in one hour and (b) how fast the water is coming out the drippers
Physics
1 answer:
VashaNatasha [74]2 years ago
3 0

Answer:

a

   V =  5.30 *10^{-2} \ m^3

b

   v_1 = 0.3127 \ m/s

Explanation:

From the question we are told that

   The number of identical drippers is  n =  60

   The diameter of each hole in each dripper is  d =  1.0 \  mm =  0.001 \  m  

   The diameter of the main pipe is  d_m  =  2.5 \  cm  =  0.025 \  m

    The speed at which the water is flowing is  v  =  3.00 \  cm/s =  0.03 \  m/s

Generally the amount of water used in  one hour = 3600 seconds is mathematically represented as

          V =  A *  v  *  3600

Here A is the area of the main pipe with value

         A =  \pi  * \frac{d^2}{4}

=>       A = 3.142   * \frac{0.025^2}{4}

=>        A =  0.0004909 \  m^2

So  

=>   V =  0.0004909  *  0.03  *  3600

=>  V =  5.30 *10^{-2} \ m^3

Generally the area of the drippers is mathematically represented as

       A_1=  n  * \pi \frac{d^2}{4}

=>    A_1 =  60   * 3.142 *  \frac{0.001 ^2}{4}

=>    A_1 =  4.713 *10^{-5} \  m^2

Generally from continuity equation we have that  

         Av =  A_1 v_1

=>      0.0004909 *  0.03 =  4.713 *10^{-5} *  v_1

=>   v_1 = 0.3127 \ m/s

   

     

You might be interested in
A man in a strength competition pulls an 18-wheel truck 3.10 m in 20.5 s. There is a cable that is attached to his body that exe
larisa [96]

Answer:

114.32195122 but Round your answer to three significant figures.) is 114

Explanation:

Just took the test

4 0
2 years ago
The furnace keeps houseAat 25◦C, while thefurnace in houseBkeeps it at 20◦C. Which house requires heat to be supplied by its fur
EleoNora [17]

Answer:

House A requires heat at a slightest faster rate than B

Explanation:

House A requires heat at a slightest faster rate than B due to the slight high temperature the furnace A is.

5 0
2 years ago
Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
masha68 [24]

Answer:

  F = 69.3 N

Explanation:

For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by

               fr = μ N

We define a reference system parallel to the floor

block B  ( lower)

Y axis  

            N - W₁-W₂ = 0

            N = W₂ + W₂

            N = (M + m) g

X axis

              F -fr = M a

for block A (upper)

X axis

              fr = m a                 (2)

so that the blocks do not slide, the acceleration in both must be the same.

Let's solve the system by adding the two equations

             F = (M + m) a          (3)

             a =\frac{F}{ M+m}

the friction force has the formula

            fr = μ N

             fr = μ (M + m) g

let's calculate

            fr = 0.34 (2.0 + 0.250) 9.8

            fr = 7.7 N

we substitute in equation 2

             fr = m a

             a = fr / m

             a = 7.7 / 0.250

             a = 30.8 m / s²

we substitute in equation 3

             F = (2.0 + 0.250) 30.8

             F = 69.3 N

5 0
2 years ago
A solid uniform sphere of mass 1.85 kg and diameter 45.0 cm spins about an axle through its center. Starting with an angular vel
KengaRu [80]

Answer:

The net torque is 0.0372 N m.

Explanation:

A rotational body with constant angular acceleration satisfies the kinematic equation:

\omega^{2}=\omega_{0}^{2}+2\alpha\Delta\theta (1)

with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

\frac{\omega^{2}-\omega_{0}^{2}}{2\Delta\theta}=\alpha

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

\alpha=-\frac{-(15.1)^{2}}{2(114.3)}=1.00\frac{rad}{s^{2}}

The negative sign indicates the sphere is slowing down as we expected.

Now with the angular acceleration we can use Newton's second law:

\sum\overrightarrow{\tau}=I\overrightarrow{\alpha} (2)

with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:

I = \frac{2MR^{2}}{5}

With M the mass of the sphere an R its radius, then:

I = \frac{2(1.85)(\frac{0.45}{2})^{2}}{5}=0.037 kg*m^2

Then (2) is:

\sum\overrightarrow{\tau}=0.037(-1.00)=0.037 Nm

7 0
2 years ago
Read 2 more answers
Which set of coordinate axes is the most convenient to use in this problem?
ad-work [718]
Longitude and latitude
6 0
2 years ago
Read 2 more answers
Other questions:
  • Your boat capsizes but remains floating upside down. what should you do?
    13·2 answers
  • A rock, which weighs 1400 n in air, has an apparent weight of 900 n when submerged in fresh water (998 kg/m3). the volume of the
    14·1 answer
  • A 9V battery is directly connected to each of 3 LED bulbs. Select the statement that accurately describes this circuit. A) A dir
    5·2 answers
  • In a ceiling fan, electrical energy, N, is transferred to another form, M. Energy transfers are never 100% efficient. Some of th
    15·2 answers
  • A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
    11·1 answer
  • A ruler of length 0.30m is pivoted at its centre. Equal and opposite forces of magnitude 2.0N are applied to the ends of the rul
    9·1 answer
  • Feng and Isaac are riding on a merry-ground. Feng rides on a horse at the outer rim of the circular platform, twice as far from
    10·1 answer
  • A solenoid 10.0 cm in diameter and 75.0 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    6·2 answers
  • Tire marks left by a decelerating car were 500. m long. If the car’s acceleration was -8.00 m/s2, what was its initial velocity?
    7·1 answer
  • Gregor Mendel finished his pea plant experiments in 1863 and published his results in 1866. However, few scientists saw Mendel's
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!