Answer:
The time of a commercial airplane is 280 minutes
Step-by-step explanation:
Let
x -----> the speed of a commercial airplane
y ----> the speed of a jet plane
t -----> the time that a jet airplane takes from Vancouver to Regina
we know that
The speed is equal to divide the distance by the time
y=2x ----> equation A
<u><em>The speed of a commercial airplane is equal to</em></u>
x=1,730/(t+140) ----> equation B
<u><em>The speed of a jet airplane is equal to</em></u>
y=1,730/t -----> equation C
substitute equation B and equation C in equation A
1,730/t=2(1,730/(t+140))
Solve for t
1/t=(2/(t+140))
t+140=2t
2t-t=140
t=140 minutes
The time of a commercial airplane is
t+140=140+140=280 minutes
Answer:
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
Step-by-step explanation:
Observe that in the single trial, we have (8 4) possibilities of choosing our set of balls. If we have chosen two white balls and two black balls, the probability of doing that is simply
p=(4 2)*(4 2)/(8 4)
This is well know Hyper geometric distribution. Now, define random variable X that marks the number of trials that have been needed to obtain the right combination (two white and two black balls). From the nature of the problem, observe that X has Geometric distribution with parameter p that has been calculated above. Hence
P(X = n) = (1— p)^n-1 *( p )
<em>Find the probability of success in a single trial and then think about the nature of the problem (when do we stop). </em>
Find c, yenvelope(x,t), and ycarrier(x,t). express your answer in terms of a, k1, k2, x, t, ω1, and ω2. separate the three parts
steposvetlana [31]
Answer:

Step-by-step explanation:
Given

using a trigonometrical identity
sin p + sin q = 2 sin ( p+q/2) cos ( p-q/2)
and here the condition is
the choice is in between sinax and cosax
where a > b
so we get using above equation

Your answer is c, 638.54 − 159.50 + x ≥ 500; x ≥ $20.96
Kilograms is a type of measurement for weight, and so the converted measure should also be weight (which leaves only oz. and lbs.)
The converting ratio of kilograms to pounds is: 1 = 2.2
The converting ratio of kilograms to ounces is: 1 = 35.274
This means that pounds, or (B) is your closest answer
hope this helps