Answer:
It wouldn't be able to migrate to the cell's poles.
Explanation:
During anaphase, microtubules attach the chromosome's centromeres and start dragging them towards the poles of the cell. In mitosis, this causes the separation of both sister chromatids for each chromosome, and each chromatid migrates to a different pole. In meiosis, first each homologous chromosome is separated by the same process, and then the sister chromatids are separated during anaphase II. If a chromosome doesn't have centromeres, microtubules are unable to attach the chromosomes, and so the separation of either sister chromatids or homologous chromosomes can't take place.
Answer:
Hypertonic blood draws water out of the interstitial fluid, which makes the interstitial fluid hypertonic. This, in turn, draws water out of the cells.
Basically an hype tonic blood has high solute potential,( low water potential) compare with the surrounding plasma and the interstitial fluid. Thus the interstitial fluid is hypotonic to the blood.
Consequently,water with higher potential moves from the interstitial fluid medium into the blood by osmosis through the capillary endothelial. This raises the water potential of the blood, lowering the solute potential, thus making it hypotonic to the interstitial fluid; which is now hypertonic(lower water potential ,due to loss to the blood by osmosis).
Since the interstitial fluids is now hyper tonic to the surrounding cells, water moves from the hypo tonic surrounding cells through osmosis into the interstitial fluids. The sequence continues until a stable internal environment is achieved,
In eukaryotes, <em>replication takes place in the nucleus</em> as prokaryotes do not have a true nucleus and <em>replication takes place in the cytoplasm</em>. The nucleus of the eukaryotes is the location where genetic material (DNA) is found; in prokaryotes, the genetic material is condensed in the cytoplasm called the nucleoid. There are multiple replication forks or <em>multiple origins of replication </em>in eukaryotes in contrast to prokaryotes which only has <em>one origin of replication. </em>Lastly, replication in eukaryotes <em>occurs at multiple points along the chromosome; </em>in contrast with prokaryotes where it <em>occurs at just one point on the chromosome.</em>