Answer: 2.1 Pull out like factors :
6s - 2r = -2 • (r - 3s)
Equation at the end of step
((0-(9•(6s-4r)))+3s)--14•(r-3s)
Pulling out like terms
4.1 Pull out like factors : 6s - 4r = -2 • (2r - 3s)
Equation at the end of step
((0--18•(2r-3s))+3s)--14•(r-3s)
Final result :
<u>50r - 93s</u>
We know that the angles of a triangle sum to 180°. For ΔABC, this means we have:
(4x-10)+(5x+10)+(7x+20)=180
Combining like terms,
16x+20=180
Subtracting 20 from both sides:
16x=160
Dividing both sides by 16:
x=10
This means ∠A=4*10-10=40-10=30°; ∠B=5*10+10=50+10=60°; and ∠C=7*10+20=70+20=90.
For ΔA'B'C', we have
(2x+10)+(8x-20)+(10x-10)=180
Combining like terms,
20x-20=180
Adding 20 to both sides:
20x=200
Dividing both sides by 20:
x=10
This gives us ∠A'=2*10+10=20+10=30°; ∠B'=8*10-20=80-20=60°; and ∠C'=10*10-10=100-10=90°.
Since the angle are all congruent, ΔABC~ΔA'B'C' by AAA.
She bwill need 377 pices of wood hope this helps
Answer:
1). 0.903547
2). 0.275617
Step-by-step explanation:
It is given :
K people in a party with the following :
i). k = 5 with the probability of 
ii). k = 10 with the probability of 
iii). k = 10 with the probability 
So the probability of at least two person out of the 'n' born people in same month is = 1 - P (none of the n born in the same month)
= 1 - P (choosing the n different months out of 365 days) = 
1). Hence P(at least 2 born in the same month)=P(k=5 and at least 2 born in the same month)+P(k=10 and at least 2 born in the same month)+P(k=15 and at least 2 born in the same month)
= 
= 
= 0.903547
2).P( k = 10|at least 2 share their birthday in same month)
=P(k=10 and at least 2 born in the same month)/P(at least 2 share their birthday in same month)
= 
= 0.0.275617
Yes because it can be put in a fraction and it ends